
Nobody Can Program Correctly

Lessons from 20 Years of Debugging C++ Code
Sebastian Theophil, think-cell Software, Berlin

 stheophil@think-cell.com

1 / 70

file:///Users/stheophil/Programming/think-cell-talks/debugging/stheophil@think-cell.com

What is a bug?
Your program does not conform to your specification.

Specification may be explicit or implicit.

A bug report describes, at best, a symptom of a bug.

1 / 70

First, you have to notice the bug

2 / 70

First, you have to notice the bug
Better:

A crash, a core dump, an error message, a line in a log file, a misbehavior

Even Better:

Systematic testing by your QA engineers

Best:

Unit testing, automated testing of any kind

These detect symptoms of your bug

3 / 70

First, you have to notice the bug
Better:

A crash, a core dump, an error message, a line in a log file, a misbehavior

Even Better:

Systematic testing by your QA engineers

Best:

Unit testing, automated testing of any kind

These detect symptoms of your bug

How many to you notice?

How many when they occur on your client's computer?

4 / 70

First, you have to notice the bug

5 / 70

First, you have to notice the bug
Compile time

Type checking

static_assert

constexpr evaluation

6 / 70

First, you have to notice the bug
Compile time

Type checking

static_assert

constexpr evaluation

CppCon 2020: “Constexpr Everything” - The Standard Library, Microkernel, Apps, and Unit Tests - Rian Quinn

7 / 70

https://www.youtube.com/watch?v=OcyAmlTZfgg

First, you have to notice the bug
Compile time

Type checking

static_assert

constexpr evaluation

CppCon 2020: “Constexpr Everything” - The Standard Library, Microkernel, Apps, and Unit Tests - Rian Quinn

Build time & QA

Unit testing

Automated testing

8 / 70

https://www.youtube.com/watch?v=OcyAmlTZfgg

First, you have to notice the bug
Runtime

Strict error checking

Check all API return values and report them

Assert pre-conditions and post-conditions

Report them

Enforce invariants, notice unexpected behavior sooner

9 / 70

First, you have to notice the bug

10 / 70

Learning from a single occurrence?

"One in a million is always next Tuesday."
Gordon Letwin, architect for MS-DOS 4

 https://docs.microsoft.com/en-us/archive/blogs/larryosterman/one-in-a-million-is-next-tuesday

May be a rare chance to analyze a problem.

Hard to reproduce in the lab, yet with an obvious fix.

Will occur 1000s of times once product is rolled out!

11 / 70

https://docs.microsoft.com/en-us/archive/blogs/larryosterman/one-in-a-million-is-next-tuesday

Learning from a single occurrence?
Techniques

Attach debugger and look at stack trace

Get full memory dump, e.g., with ProcDump

Don't turn it off and on again!

Results

Form a hypothesis on the cause of the symptom

Better error reporting, stricter invariants?

12 / 70

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

Example
Shared temporary data between processes in a single file

13 / 70

Example
Shared temporary data between processes in a single file

14 / 70

Example
Shared temporary data between processes in a single file

15 / 70

Example
Shared temporary data between processes in a single file

 int append(std::vector<std::byte> vecbyte) {
 std::scoped_lock lock(lock_on_temp_file());

 CompactSharedTempFileIfNecessary();

 int handleNew = AppendDataToTempFile(vecbyte);
 return handleNew;
 }

16 / 70

Example
Shared temporary data between processes in a single file

 int append(std::vector<std::byte> vecbyte) {
 std::scoped_lock lock(lock_on_temp_file());

 CompactSharedTempFileIfNecessary();

 int handleNew = AppendDataToTempFile(vecbyte);
 return handleNew;
 }

 void read(int handle, void* pv, std::size_t offset, std::size_t count) {
 std::shared_lock lock(lock_on_temp_file());
 CopyDataAtHandleOffset(handle, offset, count, pv);
 }

17 / 70

Example
Shared temporary data between processes in a single file

 int append(std::vector<std::byte> vecbyte) {
 std::scoped_lock lock(lock_on_temp_file());

 CompactSharedTempFileIfNecessary();

 int handleNew = AppendDataToTempFile(vecbyte);
 return handleNew;
 }

 void read(int handle, void* pv, std::size_t offset, std::size_t count) {
 std::shared_lock lock(lock_on_temp_file());
 CopyDataAtHandleOffset(handle, offset, count, pv);
 }

 void delete(int handle) noexcept {
 std::shared_lock lock(lock_on_temp_file());
 LookupHandle(handle).m_bDeleted = true;
 }

18 / 70

Example
Shared temporary data between processes in a single file

 int append(std::vector<std::byte> vecbyte) {
 std::scoped_lock lock(lock_on_temp_file());

 CompactSharedTempFileIfNecessary();

 int handleNew = AppendDataToTempFile(vecbyte);
 return handleNew;
 }

 void read(int handle, void* pv, std::size_t offset, std::size_t count) {
 std::shared_lock lock(lock_on_temp_file());
 CopyDataAtHandleOffset(handle, offset, count, pv);
 }

 void delete(int handle) noexcept {
 std::shared_lock lock(lock_on_temp_file());
 LookupHandle(handle).m_bDeleted = true;
 }

19 / 70

Closing in on the problem

20 / 70

Closing in on the problem

Debugging is an iterative process
Don't do it fast, do it right.

21 / 70

Reproduction
1. Always reproducible in debug builds, on any machine
2. Sometimes reproducible, in debug, on any machine
3. Always reproducible, in debug, on specific machines
4. Sometimes reproducible, in debug, on specific machines
5. ...
6. ...
7. Sometimes reproducible, only in release builds, only on specific machines

We want to move up!

22 / 70

Reproduction

"Only sometimes reproducible, ..."
Use tools that detect hard-to-reproduce issues:

 AddressSanitizer, ThreadSanitizer, UndefinedBehaviorSanitizer

Is it a timing issue? Debugging may make the issue disappear because now the code is running too slow.

Can you write a stress test to force the issue?

Can you write to a log file and still reproduce the bug?

Write code to diagnose system when the problem occurs.

23 / 70

Reproduction

"Only reproducible on some machines ..."
Gather info about environment:

OS version, CPU, version of your software, etc

Anything that could interfere with your program? Desktop environments are the worst!

Virus scanner blocking files

System tools hooking file access

System management tools disabling parts of your software

Non-standard user rights management

DRM software that hooks into your software

Can you reproduce this environment in a VM? On a client machine? Can the client ship an identical machine?

Could also be a timing issue. Very slow machine? Very fast? Very busy?

24 / 70

Reproduction
If all else fails:

Automatically report errors to catch more similar issues (Google CrashPad)

Write and ship analysis code that tries to nail down the issue

Try out fixes if you have great reporting

Can you look at your program state after the problem?

A file written by your program showing the wrong output?

25 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

26 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

27 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

Format string doubled 18 times?

28 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

Format string doubled 18 times?

std::vector<std::pair<std::size_t, format>>

29 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

Format string doubled 18 times?

std::vector<std::pair<std::size_t, format>>

Stored in shared memory, shared between different processes

30 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

Format string doubled 18 times?

std::vector<std::pair<std::size_t, format>>

Stored in shared memory, shared between different processes

Vector size (end - begin) / sizeof(std::pair<std::size_t, format>)

31 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

Format string doubled 18 times?

std::vector<std::pair<std::size_t, format>>

Stored in shared memory, shared between different processes

Vector size (end - begin) / sizeof(std::pair<std::size_t, format>)

How big is sizeof(std::size_t) ?

32 / 70

Example
Customer report: Starting our software fails. According to log file with std::bad_alloc .

Telemetry tells us, loading settings file fails.

No reproduction but we get the settings file and can look at it.

Contains bogus data in number formatted string.

2^18 times format string "%a" instead of once.

Format string doubled 18 times?

std::vector<std::pair<std::size_t, format>>

Stored in shared memory, shared between different processes

Vector size (end - begin) / sizeof(std::pair<std::size_t, format>)

How big is sizeof(std::size_t) ?

Not the same size in 32 bit and 64 bit processes

33 / 70

Finding the problem
From Reproduction to Problem Description

Sometimes symptom does not lead directly to cause

Problem may have happened earlier & somewhere else in your code

How to find the real problem?

Tools: Again, use all sanitizers!

34 / 70

Finding the problem
Gain understanding of larger system by tracing

Get an understanding of code being called/order of calls

Good old printf debugging
Downside: Requires recompilation

Better: Use gdb/lldb/Visual Studio tracing breakpoints
No recompilation necessary

Tracing breakpoints can be added to OS functions, binary code

gdb and lldb are powerful
Can print stack traces

Can be scripted to execute commands automatically, add a large number of breakpoints automatically

gdb/lldb even have Python API

Careful: Tracing may make timing-dependent bugs disappear

35 / 70

Finding the problem
Gain understanding of OS interaction by tracing

Know your OS specific logging tools, e.g.,

Windows: ProcessMonitor (https://docs.microsoft.com/en-us/sysinternals/downloads/procmon)

macOS: dtrace (http://dtrace.org/blogs/about/)

Linux: strace etc (https://linux-audit.com/monitor-file-access-by-linux-processes/)

Know your Operating System!

Semantics of OS primitives

File locks, shared memory, virtual memory, file system, I/O, User Interface, Rendering

36 / 70

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
http://dtrace.org/blogs/about/
https://linux-audit.com/monitor-file-access-by-linux-processes/

Finding the problem
Isolate the wrong part of your code

Do you have a state that still worked?

Can you find breaking change by binary searching your commits?

git bisect

Understand change to prevent error cycles

Step through working/broken versions in parallel, where does behavior differ?

Do the reverse:

disable code until bug disappears

Again, use "binary search" to track down the problem in least number of steps

Both require knowledge of code base. Can be very time consuming.

37 / 70

Finding the problem
Improve code to find the problem

Document invariants: Use asserts a lot

For complex checks, use temporary asserts to narrow down problems

Legacy code?

Introduce safe programming techniques e.g. smart pointers, RAII etc.

May fix bugs you haven't even reproduced yet

38 / 70

Finding the problem
Reverse debugging tools

let you step backwards through program

WinDbg https://www.youtube.com/watch?v=l1YJTg_A914

Undo (Linux) https://undo.io

rr (Linux) https://rr-project.org

Know your debugger itself

Do you use data breakpoints/watchpoints?

Do you put frequently used functionality into debugger scripts?

Write debug visualizers for your data types!

Get at least passive assembly skills

39 / 70

https://www.youtube.com/watch?v=l1YJTg_A914
https://undo.io/
https://rr-project.org/

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails with rng.size()==2

40 / 70

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails with rng.size()==2

lldb> watch set expression -s 4 -- &an[0]

41 / 70

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails with rng.size()==2

lldb> watch set expression -s 4 -- &an[0]

std::byte* p = &an[0];
for(int v=0; v<4; ++v) {
 // do something with p + v * sizeof(int)
}

42 / 70

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails with rng.size()==2

lldb> watch set expression -s 4 -- &an[0]

std::byte* p = &an[0];
for(int v=0; v<4; ++v) {
 // do something with p + v * sizeof(int)
}

 ldr x8, [x9, #0x100]
 ldrsw x10, [x9, #0xf8]
-> add x8, x8, x10, lsl #3

43 / 70

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails

lldb> watch set expression -s 4 -- &an[0]

std::byte* p = &an[0];
for(int v=0; v<4; ++v) {
 // do something with p + v * sizeof(int)
}

 ldr x8, [x9, #0x100] ; get pointer p to an
 ldrsw x10, [x9, #0xf8] ; get loop variable v
-> add x8, x8, x10, lsl #3 ; access p[v<<3] or p[v*8]

44 / 70

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails

lldb> watch set expression -s 4 -- &an[0]

std::byte* p = &an[0];
for(int v=0; v<4; ++v) {
 // do something with p + v * sizeof(int)
}

 ldr x8, [x9, #0x100] ; get pointer p to an
 ldrsw x10, [x9, #0xf8] ; get loop variable v
-> add x8, x8, x10, lsl #3 ; access p[v<<3] or p[v*8]

The buggy code was ported from Windows to macOS.

45 / 70

Example

std::array<int, 4> an = {1, 5, 7, 8};
auto rng = GetItemFromIndices(&an[0], 4);
assert(rng.size()==4); // Fails

lldb> watch set expression -s 4 -- &an[0]

std::byte* p = &an[0];
for(int v=0; v<4; ++v) {
 // do something with p + v * sizeof(int)
}

 ldr x8, [x9, #0x100] ; get pointer p to an
 ldrsw x10, [x9, #0xf8] ; get loop variable v
-> add x8, x8, x10, lsl #3 ; access p[v<<3] or p[v*8]

The buggy code was ported from Windows to macOS.

int* is cast to long* somewhere. On Windows, sizeof(long)==4 . On macOS, sizeof(long)==8 .

46 / 70

Finding the problem
From reproduction to cause of the bug

Iterative Process: Analysis - Hypothesis - Test - Repeat

Use all tools at your disposal and learn to use them

debuggers, sanitizers

reverse debuggers

OS facilities to capture process traces

Get to know the operating system

47 / 70

Finding the problem
From reproduction to cause of the bug

Iterative Process: Analysis - Hypothesis - Test - Repeat

Use all tools at your disposal and learn to use them

debuggers, sanitizers

reverse debuggers

OS facilities to capture process traces

Get to know the operating system

But most importantly

48 / 70

Finding the problem
From reproduction to cause of the bug

Iterative Process: Analysis - Hypothesis - Test - Repeat

Use all tools at your disposal and learn to use them

debuggers, sanitizers

reverse debuggers

OS facilities to capture process traces

Get to know the operating system

But most importantly

Question your assumptions.

49 / 70

Classify bug
You didn't write what you meant

Uninitialised data (e.g. indices?)

Memory management problem
use after free,

or rather reference counting bug?

use of out-of-scope temporary

Stack corruption

Data corruption through missing locks

Often, fix is a local change or use of better programming practices

50 / 70

Classify bug
You didn't write what you meant

Uninitialised data (e.g. indices?)

Memory management problem
use after free,

or rather reference counting bug?

use of out-of-scope temporary

Stack corruption

Data corruption through missing locks

Often, fix is a local change or use of better programming practices

But: Always check the rest of code base!

51 / 70

Classify bug
You wrote what you meant, but meant wrong

i.e. your mental model was wrong

You need a new one. A local fix will not be enough.

You didn't understand the spec of somebody else's code correctly

Wrong use of internal and external API

Use of OS facilities that don't work like you thought they did

You didn't understand your own requirements correctly

Is your algorithm correct at all?

Is the algorithm the best choice?

52 / 70

Classify bug
How to tell those two cases apart

That is not easy.

53 / 70

Classify bug
How to tell those two cases apart

That is not easy.

 void do_something_interesting(std::vector<std::unique_ptr<T>> const& vecp) noexcept {
 tc::for_each(vecp, [](auto const& p) noexcept {
 foo(*p);
 });
 }

54 / 70

Classify bug
How to tell those two cases apart

That is not easy.

 void do_something_interesting(std::vector<std::unique_ptr<T>> const& vecp) noexcept {
 tc::for_each(vecp, [](auto const& p) noexcept {
 foo(*p); // crashes here with dereferencing null pointer
 });
 }

55 / 70

Classify bug
How to tell those two cases apart

That is not easy.

 void do_something_interesting(std::vector<std::unique_ptr<T>> const& vecp) noexcept {
 tc::for_each(vecp, [](auto const& p) noexcept {
 foo(*p); // crashes here with dereferencing null pointer
 });
 }

 void do_something_interesting(std::vector<std::unique_ptr<T>> const& vecp) noexcept {
 tc::for_each(vecp, [](auto const& p) noexcept {
 if(p) {
 foo(*p);
 }
 });
 }

56 / 70

Classify bug
How to tell those two cases apart

That is not easy.

 void do_something_interesting(std::vector<std::unique_ptr<T>> const& vecp) noexcept {
 tc::for_each(vecp, [](auto const& p) noexcept {
 foo(*p); // crashes here with dereferencing null pointer
 });
 }

 void do_something_interesting(std::vector<std::unique_ptr<T>> const& vecp) noexcept {
 tc::for_each(vecp, [](auto const& p) noexcept {
 if(p) {
 foo(*p);
 }
 });
 }

Wrong! Or at least, possibly wrong.

57 / 70

Classify bug
How to tell those two cases apart

1. Look at the bigger picture
2. What are you trying to achieve?
3. How are you trying to achieve that?
4. Is that the correct approach?
5. Do you understand all the invariants?
6. Is the bug violating one of those invariants?

Rethink your assumptions, your mental model!

58 / 70

Fixing bugs
Smallest possible fix

Solves the problem

Does not introduce new bugs

59 / 70

Fixing bugs
Smallest possible fix

Solves the problem

Does not introduce new bugs

But

May not fix the root of the problem

Or worse, it only hides one instance of the problem.

May, over time, reduce code quality and make code harder to understand

60 / 70

Fixing bugs
What should the ideal solution look like in an ideal world?

Given everything you know now, how would you solve the problem?

You need to move towards this solution!

Given my constraints, what should I change now?

Do you need to ship a fix quickly?

Do you work in an especially secure environment?

In a very regulated environment?

1. Deliver small fix in the stable build, ship it fast.
2. Attempt thorough fix in development branch.

61 / 70

Fixing bugs
Why did the bug happen in the first place?

Was it too hard to program correctly, easy to program incorrectly?

What was missing to program correctly?
A library feature or helper function?

An algorithm?

A standard programming practice?

How can we prevent it from happening again?

Can you make your fix elsewhere in the code?
e.g. introducing smart pointers

replacing self-written for-loops with the correct standard algorithm

Look through your codebase for that pattern!

Can you introduce the missing abstraction?

62 / 70

Fixing bugs
Missing abstractions

 std::vector<int> vecn;
 std::ranges::sort(vecn, std::ranges::less());
 auto rng2 = std::ranges::unique(rng1, std::ranges::equal());

Note the two different predicates!

They must be compatible! This was done 74 times in our code base, in different ways, some were wrong!

63 / 70

Fixing bugs
Missing abstractions

 std::vector<int> vecn;
 std::ranges::sort(vecn, std::ranges::less());
 auto rng2 = std::ranges::unique(rng1, std::ranges::equal());

Note the two different predicates!

They must be compatible! This was done 74 times in our code base, in different ways, some were wrong!

Replaced by

template<typename Rng, typename Less = tc::fn_less>
auto sort_inplace_unique_range(Rng&& rng, Less&& less)

64 / 70

Fixing bugs
Missing abstractions

Make correct error handling easy, convenient and mandatory!

if (auto const ohfile = ERRNORETRYIGNORE(
 open(file, ...)
 tc::err::returned_nonnegative_value(), // success
 tc::err::returned(invalid_filehandle, EINTR), // retry
 tc::err::returned(invalid_filehandle, {EPERM, ENOENT, EACCES}) // allowed errors
))
{}

65 / 70

Fixing bugs
Missing abstractions

Make correct error handling easy, convenient and mandatory!

if (auto const ohfile = ERRNORETRYIGNORE(
 open(file, ...)
 tc::err::returned_nonnegative_value(), // success
 tc::err::returned(invalid_filehandle, EINTR), // retry
 tc::err::returned(invalid_filehandle, {EPERM, ENOENT, EACCES}) // allowed errors
))
{}

RECT rect;
APIERR(GetClientRect(wnd, &rect));
_ASSERTEQUAL(rect.top, 0);
_ASSERTEQUAL(rect.left, 0);

66 / 70

Delivering Fix
Documentation in the code and outside the code

Write high-level documentation to explain concepts

Documentation in source files goes less out of date

Document what, when, who and why you did something

Can you reference an issue in your bug tracker?

The next developer may ask "Do we still need this?"

Code Reviews

or other collaborative practices like pair programming

explain what you did to others

often, errors in your thinking become obvious, once you have to spell it out

67 / 70

Delivering Fix
Good version control practices

Split changes into self-contained chunks

Separate refactors from changes to functionality

Do refactor during debugging!

Tests
May also prevent a regression from ever happening again

Tests also need to be well-written

Run automatically ideally

Trivial test cases are useless

Can you test random input?

68 / 70

Summary
1. Maximize number of bug reports
2. Analyze them quantitatively & qualitatively
3. Get best possible reproduction

Use sanitizers and other tools to improve and minimize reproduction

4. Analyze the problem to find underlying cause
Gain enough understanding of your system to do so!

5. Classify the bug
6. Decide the scope: Small fix, large fix, or both?
7. Fix
8. Prevent bug from ever happening again!
9. Document, test, and review

69 / 70

Thank you!
And yes, we are recruiting: hr@think-cell.com

70 / 70

