think-cell™

Windows, macOS and the Web

Lessons from cross-platform development at think-cell

Sebastian Theophil, think-cell Software, Berlin
stheophil@think-cell.com

1/87

file:///Users/stheophil/Programming/think-cell_talks/Cross-platform%20development%20C++/slides/stheophil@think-cell.com

The Problem think-cell "

2/87

The Problem think-cell "

12 years of development for Windows only
About 1.000.000 lines of C++

Pervasive use of Windows platform-specifics through-out code base

Product is an add-in, dynamically loaded

3/87

The Problem think-cell "

12 years of development for Windows only
About 1.000.000 lines of C++

Pervasive use of Windows platform-specifics through-out code base

Product is an add-in, dynamically loaded

Not in control of the main application (nor the computer itself!)

487

The Problem think-cell "

e 12 years of development for Windows only
e About 1.000.000 lines of C++

e Pervasive use of Windows platform-specifics through-out code base

e Product is an add-in, dynamically loaded

e Not in control of the main application (nor the computer itself!)
o Render into application-supplied objects:
o NSView, CALayer, HWND, DirectX texture
o Renderer needs to support DirectX and OpenGL/Metal
o Share the main message loop

o Support platform-specific features like host application

5/87

The Problem think-cell "

12 years of development for Windows only
About 1.000.000 lines of C++

Pervasive use of Windows platform-specifics through-out code base

Product is an add-in, dynamically loaded

Not in control of the main application (nor the computer itself!)
o Render into application-supplied objects:
o NSView, CALayer, HWND, DirectX texture

o Renderer needs to support DirectX and OpenGL/Metal
o Share the main message loop

o Support platform-specific features like host application

Need cross-platform toolkit that hides platform specifics and behaves identically on different platforms

6/87

think-cell™

1. Levels of Abstraction: Handling Files

2. Kernel Object Lifetimes: Interprocess Shared Memory
3. Diverging OS Behavior: Handling Mouse Events

4. Common Tooling I: Text Internationalization

5. Common Tooling Il: Error Reporting

6. Moving to WebAssembly

7187

Levels of Abstraction think-cell "

8/87

Levels of Abstraction think-cell "

e How many ways to rename a file?

9/87

Levels of Abstraction think-cell "

e How many ways to rename a file?

BOOL MoveFileExW(LPCWSTR 1pExistingFileName, LPCWSTR 1lpNewFileName, DWORD dwFlags)

int renamex_np(char constx from, char constx to, unsigned int flags)
int copyfile(char constx from, char constx to, copyfile_state_t state,
The copyfile_flags_t flags)

— [NSFileManager replaceltemAtURL:withItemAtURL:backupItemName:
options:resultingItemURL:error:]

int rename(char constx old, char constx new)
bool QFile::rename(QString const& newName)
void boost::filesystem::rename(const path& old_p, const path& new_p)

void std::filesystem::rename(path const&, path const& new_p)

10/ 87

Levels of Abstraction think-cell "

e Hard to get identical and useful low level semantics on different platforms

11 /87

Levels of Abstraction think-cell "

Hard to get identical and useful low level semantics on different platforms

We don't need a cross-platform file rename function!

This is the wrong level of abstraction!

Need functions to

12 /87

Levels of Abstraction think-cell "

e Hard to get identical and useful low level semantics on different platforms

* \We don't need a cross-platform file rename function!
e This is the wrong level of abstraction!

e Need functions to
o create a user application settings file

o create a temporary file that is automatically deleted but which can be opened by another application
o download a file to a cache in thread-safe way

o create a document in a user-specified folder,
open system-specific “Save File" dialog,
and create sandbox exception

e Functions with strong and identical semantics

13 /87

Levels of Abstraction think-cell "

o Create a user application settings file
o Windows: %APPDATA%\think—-cell [+ integrity level]\

o macOS: ~/Library/Application Support/think-cell/ or
~/Library/Group Containers/[Application Group Identifier]/

o Exclusive access while writing

o Inherit ACL from parent folder

14 /87

Levels of Abstraction think-cell "

o Create a temporary file that is automatically deleted but which can be opened by another application

CreateFile(
"o TEMPS\\...",
FILE_GENERIC_READ |FILE_GENERIC_WRITE,
FILE_SHARE_READ,
// make SECURITY_ATTRIBUTES FILE_ALL_ACCESS&~FILE_EXECUTE
// accessible by current user only,
CREATE_NEW, // the file should not already exist
FILE_ATTRIBUTE_TEMPORARY | FILE_ATTRIBUTE_HIDDEN
| FILE_FLAG_DELETE_ON_CLOSE,
nullptr
);

// synchronize file access

15/87

think-cell™

Levels of Abstraction

o Create a temporary file that is automatically deleted but which can be opened by another application

open (
"~/Library/Group Containers/[Application Group Identifier]/...",

O_RDWR | O_CREAT | O_EXCL
| O_NOFOLLOW | O_CLOEXEC
| 0_SHLOCK,
S_IRUSR|S_IWUSR

);

// synchronize file access

// handle EINTR
// manual reference counting in shared memory

16/ 87

Levels of Abstraction think-cell "

e Cross-platform interfaces need to have well-defined, strong semantics

» \Weak semantics lead to subtle errors
o Warning sign: Having to look at the implementation
e Too high-level: You miss a chance to unify code

e Too low-level:
o You'll force identical interfaces on very different things

o Semantics don't match operating system (QFile::setPermissions)

o or you lose a lot of expressiveness (rename)

17187

think-cell™

1. Levels of Abstraction: Handling Files

2. Kernel Object Lifetimes: Interprocess Shared Memory
3. Diverging OS Behavior: Handling Mouse Events

4. Common Tooling I: Text Internationalization

5. Common Tooling Il: Error Reporting

6. Moving to WebAssembly

18 /87

Kernel Object Lifetimes think-cell™

e \We use shared memory to implement inter-process communication

e Boost.Interprocess (like Qt) offers a common API for shared memory on Windows and Posix

G gettyimages’

OAuth 2.0

Kernel Object Lifetimes think-cell™

We use shared memory to implement inter-process communication

Boost.Interprocess (like Qt) offers a common API for shared memory on Windows and Posix

named memory objects mappable into different processes

o boost::interprocess::managed_shared_memory

pointers stored in shared memory

o boost::interprocess::offset_ptr
o store offset to their own this pointer

o shared memory can be mapped at different addresses

named synchronization objects

o boost::interprocess: :named_mutex

20/ 87

Kernel Object Lifetimes think-cell™

Server process:

#include <boost/interprocess/managed_shared_memory.hpp>

using namespace boost::interprocess;
using T = std::pair<double, int>;

// Name specific to build version, host, security identifier
char const szNamel[]l = { ... };

managed_shared_memory seg(create_only, szName, /* size %/ 65536);
Tx p = seg.construct<T>("A") // name of the object
(10.0, 0); // ctor first argument

Child process:

// 0Open managed shared memory
managed_shared_memory seg(open_only, szName);

// Find object
T p = seqg.find<T>("A").first;
assert(p—>first == 10.0);

21/87

Kernel Object Lifetimes think-cell™

Server process:

#include <boost/interprocess/managed_shared_memory.hpp>

using namespace boost::interprocess;
using T = std::pair<double, int>;

// Name specific to build version, host, security identifier
char const szNamel[]l = { ... };

managed_shared_memory seg(create_only, szName, /* size %/ 65536);
Tx p = seg.construct<T>("A") // name of the object
(10.0, 0); // ctor first argument

Child process:

// 0Open managed shared memory
managed_shared_memory seg(open_only, szName);

// Find object
T p = seqg.find<T>("A").first;
assert(p—>first == 10.0);

22 /87

Kernel Object Lifetimes think-cell™

e But managed_shared_memory does not use native Windows shared memory

HANDLE hMapFile = CreateFileMapping/(
/* use page Tile =/ INVALID_HANDLE_VALUE,
/* security attributes %/ NULL,
PAGE_READWRITE,
0,
/* size x/ 256,
/* object name *x/ szName);

e On Windows, if last process accessing the named memory segment dies, memory is freed

e This is a feature you want

23/ 87

Kernel Object Lifetimes think-cell™

e But managed_shared_memory does not use native Windows shared memory

HANDLE hMapFile = CreateFileMapping/(
/* use page Tile =/ INVALID_HANDLE_VALUE,
/* security attributes %/ NULL,
PAGE_READWRITE,
0,
/* size x/ 256,
/* object name *x/ szName);

e On Windows, if last process accessing the named memory segment dies, memory is freed

e This is a feature you want

... and not supported on Posix

24 [87

Kernel Object Lifetimes think-cell™

e This seems to cause problems occasionally:

D
= stackoverflow Products

Home Remove posix shared memory when not in use?

PUBLIC Asked 7 years, 11 months ago Active 2 months ago Viewed 8k times

@ Stack Overflow |
Is there any way, linux specific or not, to have posix shared memory segments (obtained with

Tags
shm_open()) removed when no process is using them. i.e. have them reference counted and have
Users 15 the system remove them when the reference becomes 0
FIND AJOB A few notes:
Jobs
e Establishing an atexit handler to remove them doesn't work if the program crashes.
Companies
e Currently, the linux specific way, | embed the pid in the segment name, and try to find unused
TEAMS What's this? segments by walking /dev/shm in an external program. Which has the drawback of having to

eriodically clean them up externally in a rather hackish way.
E!) Free 30 Day Trial P y P y y

e As the program can run multiple copies, using a well defined name for the segment that the
program reuses when it starts up is not feasible.

25/ 87

Kernel Object Lifetimes think-cell™

e This seems to cause problems occasionally:

A
= ctackoverflow Products

Home Mutex in shared memory when one user crashes?

PUBLIC Asked 10 years, 11 months ago Active 8 years, 8 months ago Viewed 10k times

@ Stack Overflow |
Suppose that a process is creating a mutex in shared memory and locking it and dumps core while

Tags .
the mutex is locked.
Users 1 5
Now in another process how do | detect that mutex is already locked but not owned by any
FIND A JOB process?
Jobs
Companies ct+ ¢ linux mutex shared-memory
TEAMS What's this? share edit follow close flag edited Dec 2 '11 at 17:27 asked Nov 9 '09 at 10:47
Q Free 30 Day Trial E‘ Zan Lynx ; “: Vivek
~ Y 471k o7 ©73 0122 tigei: 423 o1 @3 @10

add a comment

start a bounty

26/ 87

Kernel Object Lifetimes think-cell™

e This seems to cause problems occasionally:

H boostorg /interprocess ® Watc

<> Code @ Issues 38 9 Pull requests 15 (*) Actions ["l] Projects [0 Wiki () Security |~ Insights

robustness of the interprocess mutex #65
reed-lau opened this issue on 26 Oct 2018 - 0 comments

. reed-lau commented on 26 Oct 2018 @ .

when using interprocess shared memroy, there are about two locks. one is the internal mutex_family used by boost for
managing the sharedmemory in MemoryAlgorithm, one is the user's one for synchronation. both mutex will cause deadlock,

when process crash. How do you think about it.

the linux provide pthread_mutexattr_setrobust, but the interprocess module do not provide the interface, eg.
interprocess:scoped_lock's lock's return value is void instead of int, which could be compare with EOWNERDEAD.

27 187

3
= stackoverflow

Home

PUBLIC

& Stack Overflow
Tags
Users

FIND A JOB
Jobs

Companies

TEAMS What's this?

Y, Free 30 Day Trial

Products

Kernel Object Lifetimes

e This seems to cause problems occasionally:

think-cell™

4,613 20 «

how to free managed shared memory after a program crash: what are
effective techniques to use during debugging?

Asked 4 years, 4 months ago Active 4 years, 3 months ago Viewed 460 times

Admittedly | am a novice and self-taught programmer, and am finally venturing into the depths and
power of C and C++. Some things that come with this self-learning process are not textbook or
overtly googleable knowledge, such as tricks to use in difficult circumstances, and debugging
strategies.

| am using boost::interprocess to set up shared memory using the managed_shared_memory and
named objects. Unsurprisingly, my program crashes here and there for a number of reasons during
my development. So far, | am rather unfamiliar with debugging tools, especially in linux. As a
consequence, many times my shared memory does not get removed properly, as the crashing can
result in destructors never being called, etc.

So, after such a program crash, when | attempt to run my application again, when my code tires to
allocate a new segment of shared memory | see messages like:

The Overflow
/' The Overfl
Featured on Mi

() Respondir
commitme

S What shot
[*vcf] tag

Hot Meta Posts

36 Rename tt

28 / 87

Kernel Object Lifetimes think-cell™

e This seems to cause problems occasionally:

[Boost-users] [interprocess] named mutex clean up 90 views

® Chard
@P to boost. @lists.boost.org

Does calling named_mutex::remove() have consistent cross-platform behaviour?

The reason | ask is that | am trying to use a named mutex for an "I'm the
only process" check.

That is, the process takes a shared lock on the named mutex (at start up),
then, at points within the program, it attempts to get an exclusive lock in
order to perform the check/actions. When finished, the mutex is returned to
a shared lock.

29/ 87

Kernel Object Lifetimes think-cell™

On Windows, shared memory and mutexes are reference counted,
i.e., when the last user dies or crashes, resource is freed

On Posix, shared memory is either
1. File-backed:
backing file still exists if processes crash, even after reboot

2. Posix shared memory (shm_open/shm_unlink):
backing memory persists until reboot

Posix model assumes server-client model
& Server owns shared memory object

If not, there are two solutions to this problem.
Boost.Interprocess and Qt implement neither

30/87

Kernel Object Lifetimes think-cell™

1. Robust mutexes

pthread_mutexattr_t attr;

pthread_mutexattr_init(&attr);

// Allow mutex to be placed in shared memory
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ;
// Mark mutex as robust

pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);

pthread_mutex_t mtx;
pthread_mutex_init(&mtx, &attr);

[...]

if (EOWNERDEAD == pthread_mutex_lock(&mtx)) {
// Owner of lock has died, reinitialize shared memory
¥

See Linux man pages and ¥ this Boost.Interprocess pull request https://github.com/boostorg/interprocess/pull/67

31/87

https://man7.org/linux/man-pages/man3/pthread_mutexattr_setrobust.3.html
https://github.com/boostorg/interprocess/pull/67

Kernel Object Lifetimes think-cell™

2. File Locking

macOS does not support robust pthread locks unfortunately

the only other resource that has process-lifetime are file locks

Attention! File locks are weird on Posix as well:
"Everything you never wanted to know about file locking" https://apenwarr.ca/log/20101213

Please <& our Boost.Interprocess pull request https://github.com/boostorg/interprocess/pull/132

32 / 87

https://apenwarr.ca/log/20101213
https://apenwarr.ca/log/20101213
https://github.com/boostorg/interprocess/pull/132

Kernel Object Lifetimes think-cell™

¢ Introduces basic_managed_nonpersistent_shared_memory

e nonpersistent_shared_memory_object::priv_open_or_create:

handle = ::open(strFile, O_CREAT | O_EXLOCK | O_NONBLOCK, perm);
if(ipcdetail::invalid_file()==handle) {

// We are not the first to open backing file
// block until we get shared lock instead
handle = ::open(strFile, 0_SHLOCK);

} else {
ipcdetail::truncate_file(handle, 0);
// Degrade lock to shared lock when we have truncated file

// Not actually atomic?
// What about NFS?
flock(m_handle, LOCK _SH);

}

Pull request https://github.com/boostorg/interprocess/pull/132

33 /87

https://github.com/boostorg/interprocess/pull/132

Kernel Object Lifetimes think-cell™

¢ Introduces basic_managed_nonpersistent_shared_memory

e nonpersistent_shared_memory_object::priv_open_or_create:

handle = ::open(strFile, O_CREAT | O_EXLOCK | O_NONBLOCK, perm);

if(ipcdetail::invalid_file()==handle) {

// We are not the first to open backing file
// block until we get shared lock instead
handle = ::open(strFile, 0_SHLOCK);

} else {
ipcdetail::truncate_file(handle, 0);
// Degrade lock to shared lock when we have truncated file

// Not actually atomic?
// What about NFS?
flock(m_handle, LOCK _SH);

}

Pull request https://github.com/boostorg/interprocess/pull/132

34 /87

https://github.com/boostorg/interprocess/pull/132

Kernel Object Lifetimes think-cell™

¢ Introduces basic_managed_nonpersistent_shared_memory

e nonpersistent_shared_memory_object::priv_open_or_create:

handle = ::open(strFile, O_CREAT | O_EXLOCK | O_NONBLOCK, perm);

if(ipcdetail::invalid_file()==handle) {

// We are not the first to open backing file
// block until we get shared lock instead
handle = ::open(strFile, 0_SHLOCK);

} else {
ipcdetail::truncate_file(handle, 0);
// Degrade lock to shared lock when we have truncated file

// Not actually atomic?
// What about NFS?
flock(m_handle, LOCK _SH);

}

Pull request https://github.com/boostorg/interprocess/pull/132

35/87

https://github.com/boostorg/interprocess/pull/132

Kernel Object Lifetimes think-cell™

¢ Introduces basic_managed_nonpersistent_shared_memory

e nonpersistent_shared_memory_object::priv_open_or_create:

handle = ::open(strFile, O_CREAT | O_EXLOCK | O_NONBLOCK, perm);

if(ipcdetail::invalid_file()==handle) {

// We are not the first to open backing file
// block until we get shared lock instead
handle = ::open(strFile, 0_SHLOCK);

} else {
ipcdetail::truncate_file(handle, 0);
// Degrade lock to shared lock when we have truncated file

// Not actually atomic?
// What about NFS?
flock(m_handle, LOCK _SH);

}

Pull request https://github.com/boostorg/interprocess/pull/132

36 /87

https://github.com/boostorg/interprocess/pull/132

Kernel Object Lifetimes think-cell™

¢ Introduces basic_managed_nonpersistent_shared_memory

e nonpersistent_shared_memory_object::priv_open_or_create:

handle = ::open(strFile, O_CREAT | O_EXLOCK | O_NONBLOCK, perm);

if(ipcdetail::invalid_file()==handle) {

// We are not the first to open backing file
// block until we get shared lock instead
handle = ::open(strFile, 0_SHLOCK);

} else {
ipcdetail::truncate_file(handle, 0);
// Degrade lock to shared lock when we have truncated file

// Not actually atomic?
// What about NFS?
flock(m_handle, LOCK _SH);

}

Pull request https://github.com/boostorg/interprocess/pull/132

37187

https://github.com/boostorg/interprocess/pull/132

Kernel Object Lifetimes think-cell™

e Aiming for strong and identical semantics
... strong semantics means strong guarantees!
... don't sacrifice operating system guarantees for identical API!

e Implementing strong & identical semantics may be hard
... and is left to the user when cross-platform toolkits fail

-2
-
0

N
..
-1

38 /87

think-cell™

1. Levels of Abstraction: Handling Files

2. Kernel Object Lifetimes: Interprocess Shared Memory
3. Diverging OS Behavior: Handling Mouse Events
4. Common Tooling I: Text Internationalization

5. Common Tooling Il: Error Reporting

6. Moving to WebAssembly

39/87

Mouse Events think-cell "

e Superficially, Windows and macOS have a similar event handling architecture

e Windows sends messages to windows:

struct CMyWindow: ATL::CWindowImpl<CMyWindow>

{
// window message map
BEGIN_MSG_MAP (CMyWindow)
MESSAGE_HANDLER(WM_MOUSEMOVE, OnMouseMove)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnButtonDown)
MESSAGE_HANDLER (WM _LBUTTONDBLCLK, OnDoubleClick)
END_MSG_MAP()
LRESULT OnMouseMove(UINT nMsg, WPARAM wparam, LPARAM lparam,
BOOL& bHandled);
LRESULT OnButtonDown(UINT nMsg, WPARAM wparam, LPARAM lparam,
BOOL& bHandled);
LRESULT OnDoubleClick(UINT nMsg, WPARAM wparam, LPARAM 1param,
BOOL& bHandled);
e

40/ 87

Mouse Events think-cell "

e Superficially, Windows and macOS have a similar event handling architecture

e macOS handles the messages and calls event handlers directly:

@interface MyView : NSView {
— (void)mouseMoved: (NSEventx)nsevent;
— (void)mouseDragged: (NSEventx)nsevent;
— (void)mouseDown: (NSEventx)nsevent;

41 /87

Mouse Events think-cell "

e Superficially, Windows and macOS have a similar event handling architecture

e macOS handles the messages and calls event handlers directly:

@interface MyView : NSView {
— (void)mouseMoved: (NSEventx)nsevent;
— (void)mouseDragged: (NSEventx)nsevent;
— (void)mouseDown: (NSEventx)nsevent;

}

e The semantical differences are large though

42/ 87

Mouse Events think-cell "

Windows macOS

Coordinates relative to client-area of the Coordinates relative to top-level window
window/component

Single or double click —[NSEvent clickCount]

WM_MOUSELEAVE , WM_MOUSEENTERED are opt-in events. ~ —[NSResponder mouseEntered]
—[NSResponder mouseExited]

No distinction between WM_MOUSEMOVE and drag events. —[NSResponder mouseMoved]
—[NSResponder mouseDragged]

43 /87

Mouse Events think-cell "

Windows macOS

SetCapture/ReleaseCapture to receive mouse Capture is automatic
messages after mouse has exited the window.
WM_CAPTURECHANGED WM_CANCELMODE

Mouse message order can be "surprising”, see —[NSResponder mouseMoved]

QWindowsMouseHandler: :translateMouseEvent —[NSResponder mouseDown]
—[NSResponder mouseDragged]

—[NSResponder mouseUp]

44 | 87

Mouse Events think-cell "

Windows macOS

SetCapture/ReleaseCapture to receive mouse Capture is automatic
messages after mouse has exited the window.
WM_CAPTURECHANGED WM_CANCELMODE

Mouse message order can be "surprising”, see —[NSResponder mouseMoved]

QWindowsMouseHandler: :translateMouseEvent —[NSResponder mouseDown]
—[NSResponder mouseDragged]

—[NSResponder mouseUp]

The macOS model is much saner, offers strong guarantees.
Strong guarantees are good!

45/ 87

Mouse Events think-cell "

(Simplified) Mouse Message State Machine

1. WM_MOUSEMOVE

o keep track of mouse window
e TrackMouseEvent registers for WM_MOUSELEAVE

2. WM_XBUTTONDOWN

o keep track of pressed button
e ignore all other button presses
e call SetCapture to receive messages

3. WM_XBUTTONUP 3. WM_CANCELMODE /WM_CAPTURECHANGED

e Pressed button is released, ignore others e Clear mouse state
o call ReleaseCapture

46 / 87

Mouse Events think-cell "

e Aiming for strong and identical semantics
... strong semantics implies strong invariants
... must hold on each operating system
... unify the number of states your app may have

-2
-
0

47 1 87

think-cell™

1. Levels of Abstraction: Handling Files

2. Kernel Object Lifetimes: Interprocess Shared Memory
3. Diverging OS Behavior: Handling Mouse Events

4. Common Tooling I: Text Internationalization

5. Common Tooling Il: Error Reporting

6. Moving to WebAssembly

48 / 87

Text Internationalization think-cell "

e Internationalization is more than translation, but focus on that today

o Important translation features:

1. Annotate translatable text in code

TRANSLATE("Do not ask for user name/password")

2. Translation context

TRANSLATECTX("Proxy Authentication",
"Proxy: http://en.wikipedia.org/wiki/Proxy_server.")

3. There are arbitrary number of plural forms
0 weeks - 0 HeOerb
1 week - 1 Hedersi
4 weeks - 4 HeOernu
5 weeks - 5 Hederb

49/ 87

Text Internationalization think-cell "

e What is the general flow for i18n:
1. Annotation in source code

2. Extraction of translatable text

3. Send to translators

4. Get x1iff (XML Localization Interchange File Format) file

5. Import into project as resource

6. At program runtime, lookup text/language pair
e Supporting native mechanisms would suck

o You want the same markup in code
o You want a single text extraction run, preferably platform independent

o You want a uniform access mechanism for translatable strings, no lifetime issues (char constx!)

e Boost.Locale would fit the bill

50 /87

https://www.boost.org/doc/libs/1_74_0/libs/locale/doc/html/messages_formatting.html

Text Internationalization think-cell "

e Boost.Locale was added 2018 in boost 1.67:

std::cout << translate("Hello World") << std::endl;

“lMpuseT Mnp"

std::cout << translate("File","open") << std::endl;

"offnen"

std::cout << format(translate("You have {1} file in the directory",
"You have {1} files in the directory",
3)) % 3 << std::endl;

"Y Bac ectb 3 dauna B KaTanore"

51/87

https://www.boost.org/doc/libs/1_74_0/libs/locale/doc/html/messages_formatting.html

Text Internationalization think-cell "

e Boost.Locale was added 2018 in boost 1.67:

std::cout << translate("Hello World") << std::endl;

“lMpuseT Mnp"

std::cout << translate("File","open") << std::endl;

"offnen"

std::cout << format(translate("You have {1} file in the directory",
"You have {1} files in the directory",
3)) % 3 << std::endl;

"Y Bac ectb 3 dauna B KaTanore"

 We don't have to do runtime text lookups like this is 1995

e We have constexpr functions!

52 /87

https://www.boost.org/doc/libs/1_74_0/libs/locale/doc/html/messages_formatting.html

Text Internationalization think-cell "

#include <array>

enum ESupportedLanguage {
elangEN, elangRU, elangCOUNT
b

using STranslatableString = std::array<char constx, elangCOUNT>;
char constx translate(STranslatableString ts) noexcept;

#define TRANSLOOKUP(String, Context) ..
#define TRANSLATECTX(String, Context) \
translate(TRANSLOOKUP(String, Context))

int main() noexcept {
std::cout
<< TRANSLATECTX("Cancel", "Cancel: as in Windows dialogs.")
<< std::endl;

53 /87

Text Internationalization think-cell "

#include <array>

enum ESupportedLanguage {
elangEN, elangRU, elangCOUNT
b

using STranslatableString = std::array<char constx, elangCOUNT>;
char constx translate(STranslatableString ts) noexcept;

#define TRANSLOOKUP(String, Context) ..
#define TRANSLATECTX(String, Context) \
translate(TRANSLOOKUP(String, Context))

int main() noexcept {
std::cout
<< TRANSLATECTX("Cancel", "Cancel: as in Windows dialogs.")
<< std::endl;

54 /87

Text Internationalization think-cell "

#include <array>

enum ESupportedLanguage {
elangEN, elangRU, elangCOUNT
b

using STranslatableString = std::array<char constx, elangCOUNT>;
char constx translate(STranslatableString ts) noexcept;

#define TRANSLOOKUP(String, Context) ..
#define TRANSLATECTX(String, Context) \
translate(TRANSLOOKUP(String, Context))

int main() noexcept {
std::cout
<< TRANSLATECTX("Cancel", "Cancel: as in Windows dialogs.")
<< std::endl;

55 /87

Text Internationalization think-cell "

using STranslatableString = std::array<char constx, elangCOUNT>;

template<std: :uint64_t, std::uint64_t, std::uint64_t, std::uint64_t>
struct STranslatableStringMap {

static STranslatableString const m_apsz;
b

#define TRANSLOOKUP(String, Context) \
(STranslatableStringMap< \
StaticMurmurHash::Hash(u8 ## String).first, \
StaticMurmurHash::Hash(u8 ## String).second, \
StaticMurmurHash::Hash(u8 ## Context).first, \
StaticMurmurHash::Hash(u8 ## Context).second \
>1:1m_apsz)

56 / 87

Text Internationalization think-cell "

using STranslatableString = std::array<char constx, elangCOUNT>;

template<std: :uint64_t, std::uint64_t, std::uint64_t, std::uint64_t>
struct STranslatableStringMap {

static STranslatableString const m_apsz;
b

template<> constexpr std::array<char constx, elangCOUNT>
STranslatableStringMap<0x17aal9f18a894459, 0Oxab6ff21156e8a341,
0x691fc12842a48f3c, 0x4720ala3afl48ael
>::m_apsz{
"Cancel", "OT™MeHuTBL"
i

#define TRANSLOOKUP(String, Context) \
(STranslatableStringMap< \
StaticMurmurHash::Hash(u8 ## String).first, \
StaticMurmurHash: :Hash(u8 ## String).second, \
StaticMurmurHash::Hash(u8 ## Context).first, \
StaticMurmurHash: :Hash(u8 ## Context).second \
>::m_apsz)

57 /87

Text Internationalization think-cell "

* Reminder constexpr functions:
o implicitly inline.

o must accept and return only literal types.
o |.e. scalars, references,

o aggregatetypes T t = { ... };,e.g., std::array
o type with constexpr ctor and dtor, all data members and base classes are literal types, e.g., std::pair

o arrays of such types

o can't be virtual, cannot contain goto or try/catch
o may contain if, switch, all loop statements
o local variable declarations if variable is initialized and literal type

o ctor cannot be constexpr if class has virtual base classes

58 / 87

Text Internationalization think-cell "

namespace StaticMurmurHash {
using uint128_t = std::pair<std::uint64_t, std::uint64_t>;

template<int N>
constexpr uint128_t Hash(
char const (&at) [N],
std::uint32_t seed=0) noexcept
return MurmurHash3_x64 _128(&at[0], N, seed);

}

See https://github.com/aappleby/smhasher for MurmurHash sources

59 /87

https://github.com/aappleby/smhasher

Text Internationalization think-cell "

namespace StaticMurmurHash {
using uint128_t = std::pair<std::uint64_t, std::uint64_t>;

template<int N>

constexpr uint128_t Hash(
char const (&at) [N],
std::uint32_t seed=0) noexcept

return MurmurHash3_x64 _128(&at[0], N, seed);

}

See https://github.com/aappleby/smhasher for MurmurHash sources

e Aiming for strong and identical semantics
... that includes external tools in your build process!

60 / 87

https://github.com/aappleby/smhasher

think-cell™

1. Levels of Abstraction: Handling Files

2. Kernel Object Lifetimes: Interprocess Shared Memory
3. Diverging OS Behavior: Handling Mouse Events

4. Common Tooling I: Text Internationalization

5. Common Tooling Il: Error Reporting

6. Moving to WebAssembly

61/87

Error Reporting think-cell™

think-cell has a powerful error reporting architecture
We use a lot of ASSERTSs to check invariants

Check all system API error codes, distinguish expected and unexpected errors

Once we encounter unexpected behavior
1. Decide to show user message

2. Send an error report home
o QOur backend analyzes error report

o Checks if we have already fixed bug
or if we would like more info from user

o Reports back

o May silently download & install update

62 /87

Error Reporting think-cell™

a2 BugReporter

Fiter Bug Reports
'Build is between

‘Messagedoneﬂagis
Operating System is

#

Tota Location E Message

(anonymous namespace)::DiagnoseBugreporter56520898(43) tcaddin/PpAddin/La... |L.| _ASSERTNOTIFY(E_UNEXPECTED!=ce.Emor()
397 CAApplication::ChangeEdit Windows Shown(8) fcaddin/Excel Addin/XlApplication c... _ASSERTANYOF(m_cEditWindowsShown, (0)(1)): -1
351 CTextFrame::Assert TextCache(4) icaddin/PpAddin/PPTShapes/TextFrame cpp(17... | | _ASSERTEQUALftc:size{m_strText), NOEXCEPT(itxtmg->GetLength()): tc: size(m_strText)=0, ... 28151,30195

e Developers check and analyze most frequent bug reports regularly
o Annotate in which version bug is fixed

e Backend pre-analyzes bug reports:
o Walk stack back to relevant frame (skip smart pointers, error reporting code)

o Group errors based on method offset (not source line, nor error message)

e Finds a lot of bugs that depend on user's setup

63 /87

Error Reporting think-cell™

The core of this functionality on Windows:

BOOL MiniDumpWriteDump (

HANDLE hProcess,
DWORD ProcessId,
HANDLE hFile,
MINIDUMP_TYPE DumpType,

PMINIDUMP_EXCEPTION_INFORMATION ExceptionParam,
PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam,
PMINIDUMP_CALLBACK_INFORMATION CallbackParam

)

e Writes dump including the full stack and registers

Microsoft provides symbol servers for system libraries

Let you symbolicate the dump and analyze it
A lot of information in ~ 100kb

Nothing similar existed on macOS

64 / 87

Error Reporting think-cell™

e There is Google Breakpad/Crashpad of course:
o Writes Windows minidumps on all systems

o Need custom tools to analyze for Posix crashes (instead of lidb)

o Now planning to let lldb support windows pdb format

e Alot of code (that you need to support if you include it!)

e not very powerful solution

65 /87

Error Reporting think-cell™

There is Google Breakpad/Crashpad of course:
o Writes Windows minidumps on all systems

o Need custom tools to analyze for Posix crashes (instead of lidb)

o Now planning to let lldb support windows pdb format

A lot of code (that you need to support if you include it!)

not very powerful solution

Mach-o file format is well documented, google "Mach-O File Format Reference"

This includes the core file format
o there are docs for ELF as well, but ELF core file is not standardized
(Check what gdb does)

"all" we have to do is write mach-o core file only with stack memory

66 / 87

Error Reporting think-cell™

Out-of-process crash handling: Send task access rights

mach_port_t portBootstrap;
task_get_bootstrap_port(mach_task_self(), &portBootstrap);

// Lookup port opened by handler process
mach_port_t portChild;
bootstrap_look_up(portBootstrap, "port name", &portChild);

STcDumpMsg msg = {
{ MACH_MSGH_BITS_REMOTE (MACH_MSG_TYPE_COPY_SEND)
| MACH_MSGH_BITS_COMPLEX, sizeof(msg), portChild },
{11},
// Message copying access rights to mach_task_self()
{ mach_task_self(), 0, 0, MACH_MSG_TYPE_COPY_SEND,
MACH_MSG_PORT_DESCRIPTOR }
b
mach_msg(std: :addressof(msg.header), MACH_SEND_MSG, sizeof(msg), 0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

67 /87

Error Reporting think-cell™

Out-of-process crash handling: Send task access rights

mach_port_t portBootstrap;
task_get_bootstrap_port(mach_task_self(), &portBootstrap);

// Lookup port opened by handler process
mach_port_t portChild;
bootstrap_look_up(portBootstrap, "port name", &portChild);

STcDumpMsg msg = {
{ MACH_MSGH_BITS_REMOTE (MACH_MSG_TYPE_COPY_SEND)
| MACH_MSGH_BITS_COMPLEX, sizeof(msg), portChild },
{11},
// Message copying access rights to mach_task_self()
{ mach_task_self(), 0, 0, MACH_MSG_TYPE_COPY_SEND,
MACH_MSG_PORT_DESCRIPTOR }
b
mach_msg(std: :addressof(msg.header), MACH_SEND_MSG, sizeof(msg), 0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

68 / 87

Error Reporting think-cell™

Out-of-process crash handling: Send task access rights

mach_port_t portBootstrap;
task_get_bootstrap_port(mach_task_self(), &portBootstrap);

// Lookup port opened by handler process
mach_port_t portChild;
bootstrap_look_up(portBootstrap, "port name", &portChild);

STcDumpMsg msg = {
{ MACH_MSGH_BITS_REMOTE (MACH_MSG_TYPE_COPY_SEND)
| MACH_MSGH_BITS_COMPLEX, sizeof(msg), portChild },
{11},
// Message copying access rights to mach_task_self()
{ mach_task_self(), 0, 0, MACH_MSG_TYPE_COPY_SEND,
MACH_MSG_PORT_DESCRIPTOR }
b
mach_msg(std: :addressof(msg.header), MACH_SEND_MSG, sizeof(msg), 0,
MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

69 /87

Error Reporting think-cell™

Out-of-process crash handling: Read thread state

mach_msg_type_number_t cThreads;
thread_array_t athread;

task_threads(task, &athread, &cThreads);

struct SThreadCommand {
thread _command m_header;
x86_thread _state m_threadstate;
x86_float_state m_floatstate;
x86_exception_state m_exceptionstate;
i
std: :vector<SThreadCommand> vecthreadcmd;
// call thread_get_state for each thread/state pair

70 /87

Error Reporting think-cell™

Out-of-process crash handling: Read thread state

mach_msg_type_number_t cThreads;
thread_array_t athread;

task_threads(task, &athread, &cThreads);

struct SThreadCommand {
thread _command m_header;
x86_thread _state m_threadstate;
x86_float_state m_floatstate;
x86_exception_state m_exceptionstate;
i
std: :vector<SThreadCommand> vecthreadcmd;
// call thread_get_state for each thread/state pair

71187

Error Reporting think-cell™

Out-of-process crash handling: Read stack memory

mach_vm_address_t pvBegin = 0;
mach_vm_size_t cb = 0;
vm_region_submap_info_64 vmregioninfo;
natural_t nDepth = 0;
mach_msg_type_number_t cbVMRegionInfo =
VM_REGION_SUBMAP_INFO_COUNT_64;

std: :vector<segment_command_64> vecsegment;
while(KERN_SUCCESS == mach_vm_region_recurse(
task, &pvBegin, &cb, &nDepth, &vmregioninfo, &cbVMRegionInfo
)) {
if (VM_MEMORY_STACK==vmregioninfo.user_tag) { // stack memory
vecsegment.emplace_back(
segment_command_64{LC_SEGMENT_64, ...}
);

¥

pvBegin += cb;

72187

Error Reporting think-cell™

Out-of-process crash handling: Read stack memory

mach_vm_address_t pvBegin = 0;
mach_vm_size_t cb = 0;
vm_region_submap_info_64 vmregioninfo;
natural_t nDepth = 0;
mach_msg_type_number_t cbVMRegionInfo =
VM_REGION_SUBMAP_INFO_COUNT_64;

std: :vector<segment_command_64> vecsegment;
while(KERN_SUCCESS == mach_vm_region_recurse(
task, &pvBegin, &cb, &nDepth, &vmregioninfo, &cbVMRegionInfo
)) {
if (VM_MEMORY_STACK==vmregioninfo.user_tag) { // stack memory
vecsegment.emplace_back(
segment_command_64{LC_SEGMENT_64, ...}
);

¥

pvBegin += cb;

73187

Error Reporting think-cell™

Out-of-process crash handling: Read stack memory

mach_vm_address_t pvBegin = 0;
mach_vm_size_t cb = 0;
vm_region_submap_info_64 vmregioninfo;
natural_t nDepth = 0;
mach_msg_type_number_t cbVMRegionInfo =
VM_REGION_SUBMAP_INFO_COUNT_64;

std: :vector<segment_command_64> vecsegment;
while(KERN_SUCCESS == mach_vm_region_recurse(
task, &pvBegin, &cb, &nDepth, &vmregioninfo, &cbVMRegionInfo
)) {
if (VM_MEMORY_STACK==vmregioninfo.user_tag) { // stack memory
vecsegment.emplace_back(
segment_command_64{LC_SEGMENT_64, ...}
);

¥

pvBegin += cb;

74 187

Error Reporting think-cell™

Out-of-process crash handling: Write to File

struct mach_header_64

+ std::vector<SThreadCommand>

+ std::vector<segment_command_64>
+ actual memory segments

e Resulting file can be loaded in lidb as core file
e As zip file ~100-200 Kb

¢ Need some additional meta data

<m_nThread val="0"/>
<m_vecmodule length="538">
<elem>
<m_pvStartAddress val="140735072636928" />
<m_strPath>/usr/lib/libz.1.dylib</m_strPath>
<m_modver val="66059"/>
<m_uuid val="db120508-3bed-37a8-b439-5235eab4618a" />
</elem>

75187

Error Reporting think-cell™

Out-of-process crash handling: Backend

e Needs debug symbols for your builds

Cached system binaries for macOS

Symbol lookup: https://lldb.llvm.org/use/symbols.html

Backend wraps lldb https://lldb.llvm.org/design/sbapi.html

o load core file

o lookup binaries/symbols and add them as modules

Check out https://github.com/think-cell/minidump

76 / 87

https://lldb.llvm.org/use/symbols.html
https://lldb.llvm.org/design/sbapi.html
https://github.com/think-cell/minidump

think-cell™

1. Levels of Abstraction: Handling Files

2. Kernel Object Lifetimes: Interprocess Shared Memory
3. Diverging OS Behavior: Handling Mouse Events

4. Common Tooling I: Text Internationalization

5. Common Tooling Il: Error Reporting

6. Moving to WebAssembly

77187

WebAssembly think-cell™

e think-cell ships with Google Chrome extension and web app

e What language to use?

78187

WebAssembly think-cell™

e think-cell ships with Google Chrome extension and web app

e What language to use?

1. JavaScript was a hard no
2. TypeScript looked much better

e somewhat type-safe, type definition libraries https://github.com/Definitely Typed/Definitely Typed

e but sharing code with C++ was impossible

3. Emscripten looked interesting
 Interfacing with JavaScript loses type-safety again

auto xhr = emscripten::val::global("XMLHttpRequest").new_();
xhr["open"] ("GET", "http://google.com");

79 /87

https://github.com/DefinitelyTyped/DefinitelyTyped

WebAssembly think-cell™

e think-cell ships with Google Chrome extension and web app

e What language to use?

1. JavaScript was a hard no
2. TypeScript looked much better

e somewhat type-safe, type definition libraries https://github.com/Definitely Typed/Definitely Typed

e but sharing code with C++ was impossible

3. Emscripten looked interesting
 Interfacing with JavaScript loses type-safety again

auto xhr = emscripten::val::global("XMLHttpRequest").new_();
xhr["open"] ("GET", "http://google.com");

... S0 we build our own compiler

80 /87

https://github.com/DefinitelyTyped/DefinitelyTyped

WebAssembly think-cell™

Type definition libraries

interface HTMLElement extends Element, GlobalEventHandlers, ... {
hidden: boolean;
innerText: string;
readonly offsetParent: Element | null;

click(): void;

81/87

WebAssembly think-cell™

+ Typescript compiler API

function transform(file: string) : void {
let program = ts.createProgram([file]);
const sourceFile = program.getSourceFile(file);

ts.forEachChild(sourceFile, node => {
if (ts.isFunctionDeclaration(node)) {

// do something
} else if (ts.isVariableStatement(node)) {

// do something else

}
)

82 /87

WebAssembly think-cell™

tcjs — https://github.com/think-cell/tcjs

o Compiles typescript interface declarations to C++ interfaces

i.e. type-safe calls to JavaScript libraries via emscripten

Almost self-hosting, i.e., compiling typescript compiler interface

Still missing typescript language features, but already usable

Originally master thesis of Egor Suvorov at think-cell

Check it out!

83 /87

https://github.com/think-cell/tcjs

WebAssembly think-cell™

Type-safe calls to JavaScript/TypeScript libraries via emscripten

void transform(js::string const& file) A
js::Array<js::string> arr(jst::create_js_object);
arr—>push(file);

auto const program = js::ts::createProgram(arr, ...);
auto const sourceFile = program—->getSourceFile(file);

jsiits::forEachChild(sourceFile,
js::js::lambdal
[1(js::ts::Node jnodeChild) noexcept —> js::unknown {
if(js::ts::isFunctionDeclaration(jnodeChild)) {

}

);
}

Check out https://github.com/think-cell/tcjs
Lots of interesting work to do!

84 /87

https://github.com/think-cell/tcjs

No premature unification in code
Unify object lifetimes across Operating Systems
Maintain cross-platform invariants with state machines

Make your build tools and backends cross-platform

85 /87

No premature unification in code

Unify object lifetimes across Operating Systems
Maintain cross-platform invariants with state machines
Make your build tools and backends cross-platform

Always use C++ ¢~

86 / 87

think-cell™

Thank you!

Now to your questions!

Sebastian Theophil, think-cell Software, Berlin
stheophil@think-cell.com

87 /87

file:///Users/stheophil/Programming/think-cell_talks/Cross-platform%20development%20C++/slides/stheophil@think-cell.com

