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Abstract. This paper presents a smart algorithm for labeling column
charts and their derivatives. To efficiently solve the problem, we sepa-
rate it into two sub-problems. We first present a geometric algorithm to
solve the problem of finding a good labeling for the labels of a single col-
umn, given that some other columns have already been labeled. We then
present a strategy for finding a good order in which columns should be
labeled, which repeatedly uses the first algorithm for some limited look-
ahead. The presented algorithm is being used in a commercial product
to label charts, and has shown in practice to produce satisfactory results.

1 Introduction

Column charts in all their variations are among the most common forms of
data visualization. The need for an automated solution arises when charts are
frequently updated and manually placed labels have to be repeatedly rearranged.
So far, standard commercial software does not offer automatic and intelligent
chart labeling.

In the research community, different areas of automatic layout problems have
been considered [1]. Cartographic labeling problems of point, line and area fea-
tures have traditionally received the most attention. Most variants of these la-
beling problems are NP-hard [2] [3] [4]. In particular, for point features, various
approaches have been tried, among them gradient descent [5], rule-based systems
[6] [7], simulated annealing [8] and treating it as a combinatorial optimization
problem [9] [10]. Typically, the optimization criterion is either the number of
labels, which can be placed without collisions, or the maximum font size for
which all labels can still be placed. Alternatively, if labels are allowed to be po-
sitioned away from their features and connected by a line, minimizing the length
of connectors is a good goal function [11]. A set of constraints forbids label-label
and label-point intersections. More recently, several rule-based algorithms for the
point feature labeling problem have been developed which prune impossible or
redundant solutions from the solution space and then search the remaining solu-
tions with greater efficiency [12] [13]. There also exist approximative algorithms
guaranteed to run in polynomial time [14] [15].

Unfortunately, in practice, applying general point feature labeling to column
chart labeling gives unsatisfactory results, and no specialized algorithms have



been published. The number of labels and their size is usually set by the user,
and must be respected by the algorithm. To be aesthetically pleasing, the solution
must look orderly, which rules out the typical label clouds generated by point
feature algorithms. Finally, the solution needs to be computed at interactive
speed, for example to be integrated into a commercial presentation software like
PowerPoint.

For each segment to be labeled, a few labeling positions must be considered.
If there is enough space, the label should be put into the column segment. When
the label is only slightly too large to fit into the segment, putting the label
into a little box of background or segment color can increase legibility. If the
label collides with labels of segments above or below, labels can be horizontally
staggered. To avoid further collisions, some labels can be put to the side of the
column if the space between columns is wide enough. Finally, for very wide labels
or in case of small column spacing, labels can be arranged above or below their
columns.

Although our implementation considers all possible positions described above,
this paper focuses on the final, and most difficult placement of stacking labels
above or below their columns. For an orderly appearance, we arrange the labels
belonging to one column in a stack, where labels are in the same order as their
corresponding segments. Each stack can have its connectors on the left or right
side, which poses a combinatorial problem (Fig. 1 (d)). When adding a placement
quality metric, the problem turns into an optimization problem. The solution is
constrained by disallowing label-label and label-segment intersections.

2 Problem Definition

As the name implies, a column chart is made of a number of columns which
are composed of multiple segments. Each segment has a label and some of these
labels must be placed as a block on top of the column. In addition, each column
can have a sum label which must be placed directly on top of the block of segment
labels but can be moved independently in the horizontal direction. The problem
is to find placements for all labels on top of their columns, and decide for each
block of labels if it should be right- or left-aligned, with the goal of minimizing
the total height of the chart with its labels. The following constraints which are
illustrated in Fig. 1 must be observed:

a) On the aligned side, the block labels cannot be moved over the column edge
to leave room for connector lines to be drawn.

b) The invidual labels must not intersect other labels and can only intrude other
columns as long as they do not intersect horizontal segment boundaries. Non-
intruding solutions are preferred over intruding ones if they are otherwise of
equal quality. Allowing segment intersections here may seem odd, but we
found it to significantly improve appearance.

c) The sum label is always placed on top of the column and other labels.
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Fig. 1. The different types of choices and constraints: (a) Labels cannot be moved over
the column edge on the aligned side; (b.1) Labels can intersect neighboring columns
but not segment bounds or labels; (b.2) if possible, a solution which does not intersect
a neighboring column is preferred; (c) the sum label is always placed on top and can
be moved independently in the horizontal direction; (d) Labels can be right- or left-
aligned;

3 Finding a Local Solution

To make the labeling problem tractable, we separate it into two sub-problems.
The first is finding the best placement of a single block of labels belonging to
one column, given that some blocks of labels of other columns have already been
placed. Given such an algorithm, the second problem is a strategy in which order
columns should be processed. We start by describing an algorithm for the first,
more geometric problem.

In order to find the best placement of a block of labels, collisions with other,
already placed label blocks and the chart segments themselves must be avoided.
More specifically, we must compute the best 2D position, represented by a shift
vector V relative to the optimal position of the label block right above the
column. This vector is computed by procedure CalculateBestPosition given
the label block, the set of all labels and, implicitly, the chart segments. As a
quality criterion for CalculateBestPosition we are using the distance of the
label block from its desired position right above the column it belongs to.

A frontier is a structure which provides an efficient way of finding this optimal
position. It is essentially a function defined over a set of geometrical shapes S.
This function can be defined as f(x) = max{ y | (x, y) ∈ s ∧ s ∈ S}. That
means a frontier only contains the maxima in y-direction of all shapes contained
in S. The function f(x) and the shapes in S are represented as piece-wise linear
approximations. The frontier provides the two operations Add and Distance
which allow adding a shape to S and computing the distance between a given
shape and the frontier, respectively. Of course, we can similarly define frontiers
for the other three directions (Fig. 2).

A trivial way to compute the position of a label block would be to create a
frontier containing the outline of the chart itself and of all already placed labels
and to let the block of labels fall down at a certain x-coordinate. However, using
this strategy places the labels on top of the first obstacle they encounter, even
if there is sufficient space below this obstacle to fit the label. This space cannot
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Fig. 2. Possible frontiers: (a) vertical orientation, growing to the left, (b) vertical ori-
entation, growing to the right, (c) horizontal orientation growing down (d) horizontal
orientation growing up

be modelled by a vertically oriented frontier. However, we can use horizontally
oriented frontiers to look for a label position between the boundaries of neigh-
boring columns and other labels: a left one named Fl growing towards higher
x-coordinates and Fr, the right frontier growing towards the lower x-coordinates.
Both approaches are compared in Fig. 3. Then, we have to devise an efficient
way to find a space between those bounds which is wide enough to fit the labels
and which is closest to the desired label position immediately above the column.

(a) (b)

Fig. 3. Calculating the label block position: (a) letting the labels fall down vertically;
(b) letting the labels slide into their position between horizontal frontiers resulting in
a much better solution.

The function MoveOverFrontier shown on page 5 moves a list of shapes
C over frontier F and computes a function g(x) which for every x returns the
maximum y so that moving C by (x, y) will make C touch but not intersect the
frontier F . For the left frontier Fl, which can be defined as

Fl(y) = max{ x | (x, y) ∈ S}, (1)

the function MoveOverFrontier would compute the function

g(y) = max{ x | ∀ (x′, y′) ∈ C ∧ Fl(y′ + y) ≥ x′ + x}. (2)



As all shapes in C, frontier F and function g(y) are represented as piece-
wise linear approximations, we can compare every shape in C and the frontier
F line segment by line segment. Every line of every shape is moved over every
line segment of F . Depending on the frontier segment, two cases have to be
distinguished (l. 5 and l. 10). In both cases we calculate two vectors, one which
moves the line along the frontier segment and another which moves the line over
the end of the frontier segments. We can now regard these vectors as simple line
segments and add them to our new frontier F . In a regular frontier F , for every
position y, F describes the maximum x-coordinate of all contained shapes. In
the newly formed frontier F , for every y, F describes the x-coordinate which
makes the shapes in C touch but not intersect F .

Algorithm 1: MoveOverFrontier Algorithm

Input: A list of shapes C and a frontier F
Output: A frontier F containing the vectors which move all shapes in C

along F
frontier F ;1

foreach shape ∈ C do2

foreach line ∈ shape do3

foreach lineFrontier ∈ F do4

if lineFrontier.from.x ≤ lineFrontier.to.x then5

ptFrom = line.to - lineFrontier.to;6

ptTo = line.to - lineFrontier.from;7

F .Add( Line(ptFrom, ptTo));8

F .Add( Line(ptTo, ptFrom - (line.to - line.from), ptFrom));9

else10

ptFrom = line.from - lineFrontier.from;11

ptTo = line.to - lineFrontier.from;12

F .Add( Line(ptFrom, ptTo));13

F .Add( Line(14

ptFrom - ( lineFrontier.to - lineFrontier.from ), ptFrom));15

end16

end17

end18

end19

return F ;20

Using the frontier and the MoveOverFrontier algorithm we can now im-
plement the procedure CalculateBestPosition as follows. We calculate for
every label block which has to be placed the two frontiers Fl and Fr representing
the rightmost and leftmost bounds of the chart’s parts to the left or the right of
the labels’ column.

Then we create the frontiers Fl and Fr by moving our label block L over Fl

and Fr. The frontiers Fl and Fr define the space of possible solutions for the



label block which is available between Fl and Fr. For every move by a given y,
moving the label block by the resulting Fl(y) or Fr(y) will make it touch the
frontiers Fl or Fr, respectively. If for a given y, Fr(y) > Fl(y), then there is not
enough space between Fl and Fr at position y to fit the label.

Because the sum label is allowed to move in horizontal direction indepen-
dently of the block of segment labels, we repeat the same procedure for the sum
label, thereby creating two more frontiers Fl

′
and Fr

′
from Fl and Fr.

We then iterate over the four frontiers Fl, Fr, Fl
′
, Fr

′
at once. The 4-tuple of

line segments (sl, sr, s
′
l, s

′
r) ∈ Fl × Fr × Fl

′ × Fr
′

defines a part of our solution
space. We subdivide segments as necessary so that all segments (sl, sr, s

′
l, s

′
r) have

the same start and end y-coordinates. In this area we search for a shift vector
V which is closest to our preferred initial position, ie. closest to a shift (0, 0),
and a vector specifying the sum label position V ′. V and V ′ are constrained
to share the same y-coordinate, but may have different x-coordinates, reflecting
independent horizontal movement of the sum label.

sl sr
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l

r

valid area
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Fig. 4. (a) The two frontier segments sl and sr are shown as an example. yl and yr

define the limits of the solution space. (b) Considering all four frontier segments the
both pairs can intersect in a way, that our solution space is empty and yl > yr holds.

We find the solution V for the label block in the space between the segments
sl and sr. The sum label solution V ′ is in the space defined by s′l and s′r. Inter-
sections between the segments (cf. Fig. 4) indicate that there is no room at this
position to fit the labels. Let [l, r] be the interval which limits the space of valid
solutions between sl and sr and let [l′, r′] be the interval which limits the space
of valid solutions between s′l and s′r. We calculate the left and right boundary of
solution space yl = max(l, l′) and yr = min(r, r′). If yl > yr, our solution space is
empty because we have two disjunct solution spaces for the label block and the
sum label. If the segments did not intersect, it is still possible that the solution
space is empty because the segments overlap in the whole interval. If yl < yr, we
shorten all four segments sl, sr, s

′
l, s

′
r to the interval [yl, yr].



Now, the solution V is the point closest to P = (0, 0) and point P can either
be inside the polygon defined by sl and sr or the solution is the point on the
polygon outline closest to P which is easily computed by projecting the point on
all four line segments of the rectangle’s outline and by choosing the point closest
to P of the four solutions obtained. The sum label solution V ′ with the same
x-coordinate as V is then guaranteed to exist because the solution space is not
empty and it is easily found between s′l and s′r.

All of the above is actually done twice, for the label block aligned on the left
and on the right. We then choose the alignment with a position closer to (0, 0).

4 Determining the Labeling Order

After having explained how a single label block can be placed, the second, more
strategic problem of determining a labeling order remains. A simple approach
is to iterate simultaneously from the left and right over the set of all columns,
labeling the left labels right-aligned and the right labels left-aligned. At each
step of the iteration we place the left or right label block, whichever has the
better placement. This approach guarantees that all label blocks can actually
be placed without collisions: When proceeding on the left side, we use right-
aligned label blocks, which have their connecting lines on the right, and which
can only intersect labels to their left, which have already been placed. Collisions
with these labels can be avoided by placing the new label block high enough.
The same holds for the right side. The advantage of this simple approach is
that it always yields a solution, the disadvantage, however, is that the solution
will often have the form of a pyramid with labels stacked on top of each other
towards the center. To improve the algorithm, we can order the columns by their
height and label them starting with the lowest column. Unfortunately, placing
label blocks in an arbitrary order can prevent a column to be labeled at all, if
all room above the column is taken up by other labels. We avoid this dead-end
by inserting an artificial shape above each unlabeled column, blocking all space
above the columns, as illustrated in Fig. 5. Although the average results of this
variant are much better, there is still an easily identifiable worst-case example.
If the columns increase in height from the left to the right, the labels will also
be stacked one on top of the other.

To avoid this problem, instead of predetermining the order of labeling, at
each step, we calculate the best label block position for each column, given the
already placed labels. We again avoid the dead-end described above by blocking
the space above unlabeled columns. After calculating the best possible positions
for each column, we choose the column with the lowest top label block border to
be the one to place its block at its calculated position. The rationale behind this
criterion is to free as much room above columns as possible as early as possible,
to give more space to future label placements.



Fig. 5. The look-ahead of the MultiFrontierLookAhead algorithm: the left and
right column which have not yet been labeled are blocked in order to guarantee that
it can still be labeled in the future. The middle column cannot be labeled in this step
because the label is too wide.

We found that in many cases, this heuristic ordering is actually close to the
order that a human would use to place labels. The algorithm is guaranteed to
find a solution, which in the worst case deteriorates to the simple pyramid of
stacked labels described in the beginning of this section.

5 Extensions

One constraint has been ignored in the solution so far. Figure 1 shows labels
which overlap their neighboring columns, which is allowed, as long as they do not
overlap contained labels or segment boundaries. The geometric algorithm makes
the solution easy and it has been omitted to facilitate the presentation. When
in procedure CalculateBestPosition the Frontiers Fl and Fr are created, we
can add the horizontal segment and column bounds and the contained labels
to the Frontier, and not the segments themselves which thus may be intruded.
We can compute both solutions, with and without intruding, and pick the non-
intruding one if it is otherwise no worse than the intruding one. Likewise, other
aesthetic constraints can be easily included into our formulation. For example,
if labels should have a margin, we can inflate the shapes added to the Frontier
by a small amount.

To obtain interactive speed, we use two efficiency optimizations. Line 25 of the
MultiFrontierLookAhead algorithm already shows that after placing a label
lopt, only the labels affected by placing lopt must be recalculated. Notice that they
may not only be affected by collisions with the newly placed label, but also by
the freeing of the blocked space above the column belonging to lopt. Secondly, we
can exploit the fact that the Frontiers Fl and Fr in CalculateBestPosition
can be calculated recursively: We can compute Fn

l for column n by copying Fn−1
l

from column n − 1 and adding the shapes of the next column. After placing a
new label block, only the affected range of Frontiers must be recalculated.



Algorithm 2: MultiFrontierLookAhead Algorithm

L← list of label blocks;1

foreach l ∈ L do2

l.top ← highest y-value of the label block’s outline;3

l.labeled ← false;4

l.hasvalidsolution ← false;5

end6

while ∃ l ∈ L : l.labeled = false do7

lopt ← nil;8

V opt ← nil;9

foreach l ∈ E do10

if l.labeled = false then11

if l.hasvalidsolution = false then12

V = CalculateBestPosition(l, L);13

if V is valid then14

l.hasvalidsolution ← true;15

end16

end17

if l.hasvalidsolution = true18

∧ (lopt = nil ∨ l.top + V .y < lopt.top + V opt.y) then
lopt ← l;19

V opt ← V ;20

end21

end22

end23

PlaceLabel (lopt, V opt);24

l.hasvalidsolution ← false for all labels l which intersect with lopt25

end26

6 Evaluation

The worst case for our greedy algorithm is a column chart in form of an inverted
pyramid where the columns are getting successively lower towards the middle
(Fig. 6 (a)). If all labels are too wide to fit over their column the algorithm
will start labeling them from the left- and rightmost column effectively creating
a pyramid of stacked labels mirroring the pyramid of columns. Under the con-
straints specified in the problem definition this is the best labeling. A human
user would possibly try to find a solution which violates as few constraints as
possible. However, this case can typically be resolved by making the chart a little
bit wider. This example is also not typical for a column chart because all labels
have the same width and all labels are wider than their respective columns. Fig-
ure 6 (b) shows a more typical representative of column charts which is labeled
optimally. The positive and negative columns are treated as separate problems
and the negative values are labeled downwards. In the second column the value



3.540 is stacked on top whereas in the fourth column it is not. In the second
column the value 100 has to be moved to the top because it is too large and
intersects a big portion of the segment below. As a result, the 3.540 is moved to
the top too. Otherwise, there would not be enough space to fit the connecting
line in the segment without intersecting the label 3.540. Case (c) is an extreme
example which shows, that the algorithm always finds a solution even when the
chart becomes very small.
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Fig. 6. Labeling examples with timing information. Timing tests were made on an
Athlon 64 3800+ machine: (a) Worst-case example where all labels are wider than
their respective columns (Labeling took 60.5 ms); (b) Typical case with an optimal
solution (115 ms); (c) Extreme case with a very small chart (157 ms)



7 Conclusion

The presented algorithm has been implemented as part of the commercial chart-
ing software think-cell chart, and customers, comparing it to manually labeled
charts, are satisfied with its performance. Even for worst-case examples, the al-
gorithm provides solutions which pass as good enough in practice. In general, we
found that for practical applications worst-case performance is more important
than the average performance metrics often used in academic papers.
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