
Graphcut Textures: Image and Video Synthesis Using Graph Cuts

Vivek Kwatra Arno Schödl Irfan Essa Greg Turk Aaron Bobick

GVU Center / College of Computing
Georgia Institute of Technology

http://www.cc.gatech.edu/cpl/projects/graphcuttextures

This banner was generated by merging the source images in Figure 6 using our interactive texture merging technique.

Abstract

In this paper we introduce a new algorithm for image and video
texture synthesis. In our approach, patch regions from a sample
image or video are transformed and copied to the output and then
stitched together along optimal seams to generate a new (and typi-
cally larger) output. In contrast to other techniques, the size of the
patch is not chosen a-priori, but instead a graph cut technique is
used to determine the optimal patch region for any given offset
between the input and output texture. Unlike dynamic program-
ming, our graph cut technique for seam optimization is applicable
in any dimension. We specifically explore it in 2D and 3D to per-
form video texture synthesis in addition to regular image synthe-
sis. We present approximative offset search techniques that work
well in conjunction with the presented patch size optimization. We
show results for synthesizing regular, random, and natural images
and videos. We also demonstrate how this method can be used to
interactively merge different images to generate new scenes.

Keywords: Texture Synthesis, Image-based Rendering, Image and
Video Processing, Machine Learning, Natural Phenomenon.

1 Introduction

Generating a newer form of output from a smaller example is
widely recognized to be important for computer graphics applica-
tions. For example, sample-based image texture synthesis methods
are needed to generate large realistic textures for rendering of com-
plex graphics scenes. The primary reason for such example-based

synthesis underlies the concept of texture, usually defined as an in-
finite pattern that can be modeled by a stationary stochastic process.
In this paper, we present a new method to generate such an infinite
pattern from a small amount of training data; using a small exam-
ple patch of the texture, we generate a larger pattern with similar
stochastic properties. Specifically, our approach for texture synthe-
sis generates textures by copying input texture patches. Our algo-
rithm first searches for an appropriate location to place the patch;
it then uses a graph cut technique to find the optimal region of
the patch to transfer to the output. In our approach, textures are
not limited to spatial (image) textures, and include spatio-temporal
(video) textures. In addition, our algorithm supports iterative refine-
ment of the output by allowing for successive improvement of the
patch seams.

When synthesizing a texture, we want the generated texture to
be perceptually similar to the example texture. This concept of per-
ceptual similarity has been formalized as a Markov Random Field
(MRF). The output texture is represented as a grid of nodes, where
each node refers to a pixel or a neighborhood of pixels in the input
texture. The marginal probability of a pair of nodes depends on the
similarity of their pixel neighborhoods, so that pixels from similar-
looking neighborhoods in the input texture end up as neighbors in
the generated texture, preserving the perceptual quality of the input.
The goal of texture synthesis can then be restated as the solution for
the nodes of the network, that maximizes the total likelihood. This
formulation is well-known in machine-learning as the problem of
probabilistic inference in graphical models and is proven to be NP-
hard in case of cyclic networks. Hence, all techniques that model
the texture as a MRF [DeBonet 1997; Efros and Leung 1999; Efros
and Freeman 2001; Wei and Levoy 2000] compute some approxi-
mation to the optimal solution.

In particular, texture synthesis algorithms that generate their out-
put by copying patches (or their generalizations to higher dimen-
sions) must make two decisions for each patch: (1) where to posi-
tion the input texture relative to the output texture (the offset of the
patch), and (2) which parts of the input texture to transfer into the
output space (the patch seam) (Figure 1). The primary contribution
of this paper is an algorithm for texture synthesis, which after find-
ing a good patch offset, computes the best patch seam (the seam
yielding the highest possible MRF likelihood among all possible
seams for that offset). The algorithm works by reformulating the

http://www.cc.gatech.edu/cpl/projects/graphcuttextures

offset (relative placement of input texture)

output texture

seam (area of input
that is transferred to
output texture)

input texture

additional
patches

Figure 1: Image texture synthesis by placing small patches at var-
ious offsets followed by the computation of a seam that enforces
visual smoothness between the existing pixels and the newly placed
patch.

problem as a minimum cost graph cut problem: the MRF grid is
augmented with special nodes, and a minimum cut of this grid be-
tween two special terminal nodes is computed. This minimum cut
encodes the optimal solution for the patch seam. We also propose
a set of algorithms to search for the patch offset at each iteration.
These algorithms try to maintain the large scale structure of the
texture by matching large input patches with the output. An impor-
tant observation is that the flexibility of the our seam optimization
technique to paste large patches at each iteration in a non-causal
fashion is really what permits the design of our offset search algo-
rithms. The offset searching and seam finding methods are therefore
complementary to each other, and work in tandem to generate the
obtained results.

Efros and Freeman [2001] were the first to incorporate seam
finding by using dynamic programming. However, dynamic pro-
gramming imposes an artificial grid structure on the pixels and
therefore does not treat each pixel uniformly. This can potentially
mean missing out on good seams that cannot be modeled within the
imposed structure. Moreover, dynamic programming is a memory-
less optimization procedure and cannot explicitly improve existing
seams. This restricts its use to appending new patches to existing
textures. Our graph cut method treats each pixel uniformly and is
also able to place patches over existing texture.

Most previous work on texture is geared towards 2D images, but
the texture problem in a very similar form also appears in three
dimensions for the generation of spatio-temporal textures [Szum-
mer and Picard 1996; Schödl et al. 2000; Wei and Levoy 2000;
Bar-Joseph et al. 2001]. Unlike dynamic programming, which is
restricted to 2D, the seam optimization presented in this paper gen-
eralizes to any dimensionality. Based on this seam optimization,
we have developed algorithms for both two and three dimensions
to generate spatial (2D, images) and spatio-temporal (3D, video)
textures.

Finally, we have extended our algorithm to allow for multiple
scales and different orientations which permits the generation of
larger images with more variety and perspective variations. We have
also implemented an interactive system that allows for merging and
blending of different types of images to generate composites with-
out the need for any a priori segmentation.

2 Related work

Texture synthesis techniques that generate an output texture from
an example input can be roughly categorized into three classes.
The first class uses a fixed number of parameters within a com-
pact parametric model to describe a variety of textures. Heeger and

Bergen [1995] use color histograms across frequency bands as a
texture description. Portilla and Simoncelli’s model [2000] includes
a variety of wavelet features and their relationships, and is probably
the best parametric model for image textures to date. Szummer and
Picard [1996], Soatto et al. [2001], and Wang and Zhu [2002] have
proposed parametric representations for video. Parametric models
cannot synthesize as large a variety of textures as other models de-
scribed here, but provide better model generalization and are more
amenable to introspection and recognition [Saisan et al. 2001].
They therefore perform well for analysis of textures and can pro-
vide a better understanding of the perceptual process.

The second class of texture synthesis methods is non-parametric,
which means that rather than having a fixed number of param-
eters, they use a collection of exemplars to model the texture.
DeBonet [1997], who pioneered this group of techniques, samples
from a collection of multi-scale filter responses to generate textures.
Efros and Leung [1999] were the first to use an even simpler ap-
proach, directly generating textures by copying pixels from the in-
put texture. Wei and Levoy [2000] extended this approach to mul-
tiple frequency bands and used vector quantization to speed up the
processing. These techniques all have in common that they generate
textures one pixel at a time.

The third, most recent class of techniques generates textures
by copying whole patches from the input. Ashikmin [2001]
made an intermediate step towards copying patches by using a
pixel-based technique that favors transfer of coherent patches.
Liang et al. [2001], Guo et al. [2000], and Efros and Free-
man [2001] explicitly copy whole patches of input texture at a time.
Schödl et al. [2000] perform video synthesis by copying whole
frames from the input sequence. This last class of techniques ar-
guably creates the best synthesis results on the largest variety of
textures. These methods, unlike the parametric methods described
above, yield a limited amount of information for texture analysis.

Across different synthesis techniques, textures are often de-
scribed as Markov Random Fields [DeBonet 1997; Efros and
Leung 1999; Efros and Freeman 2001; Wei and Levoy 2000].
MRFs have been studied extensively in the context of computer
vision [Li 1995]. In our case, we use a graph cut technique to
optimize the likelihood of the MRF. Among other techniques us-
ing graph cuts [Greig et al. 1989], we have chosen a technique by
Boykov et al. [1999], which is particularly suited for the type of
cost function found in texture synthesis.

3 Patch Fitting using Graph Cuts

We synthesize new texture by copying irregularly shaped patches
from the sample image into the output image. The patch copying
process is performed in two stages. First a candidate rectangular
patch (or patch offset) is selected by performing a comparison be-
tween the candidate patch and the pixels already in the output im-
age. We describe our method of selecting candidate patches in a
later section (Section 4). Second, an optimal (irregularly shaped)
portion of this rectangle is computed and only these pixels are
copied to the output image (Figure 1). The portion of the patch to
copy is determined by using a graph cut algorithm, and this is the
heart of our synthesis technique.

In order to introduce the graph cut technique, we first describe
how it can be used to perform texture synthesis in the manner of
Efros and Freeman’s image quilting [2001]. Later we will see that
it is a much more general tool. In image quilting, small blocks
(e.g., 32 × 32 pixels) from the sample image are copied to the
output image. The first block is copied at random, and then sub-
sequent blocks are placed such that they partly overlap with pre-
viously placed blocks of pixels. The overlap between old and new
blocks is typically 4 or 8 pixels in width. Efros and Freeman use
dynamic programming to choose the minimum cost path from one

end of this overlap region to the other. That is, the chosen path is
through those pixels where the old and new patch colors are similar
(Figure 2(left)). The path determines which patch contributes pixels
at different locations in the overlap region.

To see how this can be cast into a graph cut problem, we first
need to choose a matching quality measure for pixels from the old
and new patch. In the graph cut version of this problem, the selected
path will run between pairs of pixels. The simplest quality measure,
then, will be a measure of color difference between the pairs of
pixels. Let s and t be two adjacent pixel positions in the overlap
region. Also, let A(s) and B(s) be the pixel colors at the position
s in the old and new patches, respectively. We define the matching
quality cost M between the two adjacent pixels s and t that copy
from patches A and B respectively to be:

M(s, t,A,B) = ‖A(s)−B(s)‖+‖A(t)−B(t)‖ (1)

where ‖ · ‖ denotes an appropriate norm. We consider a more so-
phisticated cost function in a later section. For now, this match cost
is all we need to use graph cuts to solve the path finding problem.

Consider the graph shown in Figure 2(right) that has one node
per pixel in the overlap region between patches. We wish to find a
low-cost path through this region from top to bottom. This region is
shown as 3×3 pixels in the figure, but it is usually more like 8×32
pixels in typical image quilting problems (the overlap between two
32× 32 patches). The arcs connecting the adjacent pixel nodes s
and t are labelled with the matching quality cost M(s, t,A,B). Two
additional nodes are added, representing the old and new patches (A
and B). Finally, we add arcs that have infinitely high costs between
some of the pixels and the nodes A or B. These are constraint arcs,
and they indicate pixels that we insist will come from one particular
patch. In Figure 2, we have constrained pixels 1, 2, and 3 to come
from the old patch, and pixels 7, 8, and 9 must come from the new
patch. To find out which patch each of the pixels 4, 5, and 6 will
come from is determined by solving a graph cut problem. Specif-
ically, we seek the minimum cost cut of the graph, that separates
node A from node B. This is a classical graph problem called min-
cut or max-flow [Ford and Fulkerson 1962; Sedgewick 2001] and
algorithms for solving it are well understood and easy to code. In
the example of Figure 2, the red line shows the minimum cut, and
this means pixel 4 will be copied from patch B (since its portion of
the graph is still connected to node B), whereas pixels 5 and 6 will
be from the old patch A.

3.1 Accounting for Old Seams

The above example does not show the full power of using graph
cuts for texture synthesis. Suppose that several patches have already
been placed down in the output texture, and that we wish to lay
down a new patch in a region where multiple patches already meet.
There is a potential for visible seams along the border between old
patches, and we can measure this using the arc costs from the graph
cut problem that we solved when laying down these patches. We can

Patch

A
Patch

B

Overlap

cut

1

2

3

4

5

6

7

8

9

Patch

A

Patch

B

∞

∞

∞

∞

∞ ∞

cut

Figure 2: (Left) Schematic showing the overlapping region between
two patches. (Right) Graph formulation of the seam finding prob-
lem, with the red line showing the minimum cost cut.

incorporate these old seam costs into the new graph cut problem,
and thus we can determine which pixels (if any) from the new patch
should cover over some of these old seams. To our knowledge, this
cannot be done using dynamic programming – the old seam and
its cost at each pixel needs to be remembered; however, dynamic
programming is a memoryless optimization procedure in the sense
that it cannot keep track of old solutions.

Existing

Pixels

A

New

Patch

B

Overlap

1

2

3

4

5

6

7

8

9

∞

∞

∞

∞

∞ ∞

Existing

Pixels

A

old
cut

new
cut

S1

S2 S3

S4

old
cut

new
cut

New

Patch

B

Figure 3: (Left) Finding the best new cut (red) with an old seam
(green) already present. (Right) Graph formulation with old seams
present. Nodes s1 to s4 and their arcs to B encode the cost of the old
seam.

We illustrate this problem in Figure 3. In the graph formulation
of this problem, all of the old patches are represented by a single
node A, and the new patch is B. Since A now represents a collec-
tion of patches, we use As to denote the particular patch that pixel
s copies from. For each seam between old pixels, we introduce a
seam node into the graph between the pair of pixel nodes. We con-
nect each seam node with an arc to the new patch node B, and the
cost of this arc is the old matching cost when we created this seam,
i.e., M(s, t,As,At) where s and t are the two pixels that straddle
the seam. In Figure 3, there is an old seam between pixels 1 and
4, so we insert a seam node s1 between these two pixel nodes. We
also connect s1 to the new patch node B, and label this arc with
the old matching cost M(1,4,A1,A4). We label the arc from pixel
node 1 to s1 with the cost M(1,4,A1,B) (the matching cost when
only pixel 4 is assigned the new patch) and the arc from s1 to pixel
node 4 with the cost M(1,4,B,A4) (the matching cost when only
pixel 1 is assigned the new patch). If the arc between a seam node
and the new patch node B is cut, this means that the old seam re-
mains in the output image. If such an arc is not cut, this means that
the seam has been overwritten by new pixels, so the old seam cost
is not counted in the final cost. If one of the arcs between a seam
node and the pixels adjacent to it is cut, it means that a new seam
has been introduced at the same position and a new seam cost (de-
pending upon which arc has been cut) is added to the final cost. In
Figure 3, the red line shows the final graph cut: the old seam at s3
has been replaced by a new seam, the seam at s4 has disappeared,
and fresh seams have been introduced between nodes 3 and 6, 5 and
6, and 4 and 7.

This equivalence between seam cost and the min-cut of the graph
holds if and only if at most one of the three arcs meeting at the
seam nodes is included in the min-cut. The cost of this arc is the
new seam cost, and if no arc is cut, the seam is removed and the
cost goes to zero. This is true only if we ensure that M is a metric
(satisfies the triangle inequality) [Boykov et al. 1999], which is true
if the norm in Equation (1) is a metric. Satisfying the triangle in-
equality implies that picking two arcs originating from a seam node
is always costlier than picking just one of them, hence at most one
arc is picked in the min-cut, as desired. Our graph cut formulation
is equivalent to the one in [Boykov et al. 1999] and the addition
of patches corresponds to the α-expansion step in their work. In
fact, our implementation uses their code for computing the graph
min-cut. Whereas they made use of graph cuts for image noise re-
moval and image correspondence for stereo, our use of graph cuts
for texture synthesis is novel.

3.2 Surrounded Regions

So far we have shown new patches that overlap old pixels only
along a border region. In fact, it is quite common in our synthesis
approach to attempt to place a new patch over a region where the
entire area has already been covered by pixels from earlier patch
placement steps. This is done in order to overwrite potentially vis-
ible seams with the new patch, and an example of this is shown in
Figure 4. The graph formulation of this problem is really the same
as the problem of Figure 3. In this graph cut problem, all of the
pixels in a border surrounding the placement region are constrained
to come from existing pixels. These constraints are reflected in the
arcs from the border pixels to node A. We have also placed a single
constraint arc from one interior pixel to node B in order to force
at least one pixel to be copied from patch B. In fact, this kind of
a constraint arc to patch B isn’t even required. To avoid clutter in
this figure, the nodes and arcs that encode old seam costs have been
omitted. These omitted nodes make many connections between the
central portion of the graph and node B, so even if the arc to B were
removed, the graph would still be connected. In the example, the
red line shows how the resulting graph cut actually forms a closed
loop, which defines the best irregularly-shaped region to copy into
the output image.

New Patch B

New
Patch

B

Existing
Pixels

A

old
cut

new
cut

Existing
Pixels

A

Figure 4: (Left) Placing a patch surrounded by already filled pixels.
Old seams (green) are partially overwritten by the new patch (bor-
dered in red). (Right) Graph formulation of the problem. Constraint
arcs to A force the border pixels to come from old image. Seam
nodes and their arcs are not shown in this image for clarity.

Finding the best cut for a graph can have a worst-case O(n2) cost
for a graph with n nodes [Sedgewick 2001]. For the kinds of graphs
we create, however, we never approach this worst-case behavior.
Our timings appear to be O(n log(n)).

4 Patch Placement & Matching

Now we describe several algorithms for picking candidate patches.
We use one of three different algorithms for patch selection, based
on the type of texture we are synthesizing. These selection methods
are: (1) random placement, (2) entire patch matching, and (3) sub-
patch matching.

In all these algorithms, we restrict the patch selection to previ-
ously unused offsets. Also, for the two matching-based algorithms,
we first find a region in the current texture that needs a lot of im-
provement. We use the cost of existing seams to quantify the error in
a particular region of the image, and pick the region with the largest
error. Once we pick such an error-region, we force the patch selec-
tion algorithm to pick only those patch locations that completely
overlap the error-region. When the texture is being initialized, i.e.,
when it is not completely covered with patches of input texture, the
error-region is picked differently and serves a different purpose: it is
picked so that it contains both initialized and uninitialized portions
of the output texture – this ensures that the texture is extended by

Sample Texture

Synthesized Texture
(Initialization)

Synthesized Texture
(After 5 steps of Refinement)

Seam Boundaries

Step 2 Step 3

Step 4 Step 5

Seam Costs

Figure 5: This figure illustrates the process of synthesizing a larger
texture from an example input texture. Once the texture is initial-
ized, we find new patch locations appropriately so as to refine the
texture. Note the irregular patches and seams. Seam error measures
that are used to guide the patch selection process are shown. This
process is also shown in the video.

some amount and also that the extended portion is consistent with
the already initialized portions of the texture.

Now we discuss the three patch placement and matching meth-
ods in some detail. The same three placement algorithms are used
for synthesis of image (spatial) and video (spatio-temporal) tex-
tures, discussed in Sections 6 and 7 respectively. Note that patch
placement is really just a translation applied to the input before it is
added to the output.

Random placement: In this approach, the new patch, (the entire
input image), is translated to a random offset location. The graph
cut algorithm selects a piece of this patch to lay down into the out-
put image, and then we repeat the process. This is the fastest syn-
thesis method and gives good results for random textures.

Entire patch matching: This involves searching for translations
of the input image that match well with the currently synthesized
output. To account for partial overlaps between the input and the
output, we normalize the sum-of-squared-differences (SSD) cost
with the area of the overlapping region. We compute this cost for
all possible translations of the input texture as:

C(t) =
1
|At | ∑

p∈At

|I(p)−O(p+ t)|2 (2)

where C(t) is the cost at translation t of the input, I and O are the
input and output images respectively, and At is the portion of the
translated input overlapping the output. We pick the new patch loca-
tion stochastically from among the possible translations according
to the probability function:

P(t) ∝ e−
C(t)
kσ2 (3)

where σ is the standard deviation of the pixel values in the input
image and k controls the randomness in patch selection. A low
value of k leads to picking of only those patch locations that have
a very good match with the output whereas a high value of k leads
to more random patch selection. In our implementation, we varied
k between 0.001 and 1.0. Note that we also constrain the selected
patch to overlap the error-region as described above. This method
gives the best results for structured and semi-structured textures
since their inherent periodicity is captured very well by this cost
function.

Sub-patch matching: This is the most general of all our patch
selection techniques. It is also the best method for stochastic tex-
tures as well as for video sequences involving textural motion such
as water waves and smoke (Section 7). The motion in such se-
quences is spatially quite unstructured with different regions of the
image exhibiting different motions; however, the motion itself is
structured in that it is locally coherent. In sub-patch matching, we
first pick a small sub-patch (which is usually significantly smaller
than the input texture) in the output texture. In our implementation,
this output-sub-patch is the same or slightly larger than the error-
region that we want to place the patch over. We now look for a sub-
patch in the input texture that matches this output-sub-patch well.
Equivalently, we look for translations of the input such that the por-
tion of the input overlapping the output-sub-patch matches it well
– only those translations that allow complete overlap of the input
with the output-sub-patch are considered. The cost of a translation
of the input texture is now defined as:

C(t) = ∑
p∈SO

|I(p− t)−O(p)|2 (4)

where SO is the output-sub-patch and all other quantities are the
same as in (2). The patch is again picked stochastically using a
probability function similar to (3).

5 Extensions & Refinements

Now we briefly describe a few improvements and extensions that
we have implemented for image and video synthesis. These exten-
sions include improvements to the cost functions that account for
frequency variations, inclusion of feathering and multi-resolution
techniques to smooth out visible artifacts, and speed ups in the
SSD-based algorithms used in patch matching.

Adapting the Cost Function: The match cost in Equation (1)
used in determining the graph cut does not pay any attention to the
frequency content present in the image or video. Usually, discon-
tinuities or seam boundaries are more prominent in low frequency
regions rather than high frequency ones. We take this into account
by computing the gradient of the image or video along each direc-
tion – horizontal, vertical and temporal (in case of video) – and
scale the match cost in (1) appropriately, resulting in the following
new cost function.

M′(s, t,A,B) =
M(s, t,A,B)

‖Gd
A(s)‖+‖Gd

A(t)‖+‖Gd
B(s)‖+‖Gd

B(t)‖
(5)

Here, d indicates the direction of the gradient and is the same as the
direction of the edge between s and t. Gd

A and Gd
B are the gradients

in the patches A and B along the direction d. M′ penalizes seams
going through low frequency regions more than those going through
high frequency regions, as desired.

Feathering and multi-resolution splining: Although graph
cuts produce the best possible seam around a given texture patch, it
can still generate visible artifacts when no good seam exists at that
point. It is possible to hide these artifacts by feathering the pixel
values across seams. For every pixel s close enough to a seam, we
find all patches meeting at that seam.

The pixel s is then assigned the weighted sum of pixel values
P(s) corresponding to each such patch P. Most of the time, this
form of feathering is done using a Gaussian kernel.

We also use multi-resolution splining [Burt and Adelson 1983]
of patches across seams, which is helpful when the seams are too
obvious, but it also tends to reduce the contrast of the image or
video when a lot of small patches have been placed in the output.
In general, we have found it useful to pick between feathering and
multi-resolution splining on a case-by-case basis.

FFT-Based Acceleration: The SSD-based algorithms de-
scribed in Section 4 can be computationally expensive if the search
is carried out naively. Computing the cost C(t) for all valid transla-
tions is O(n2) where n is the number of pixels in the image or video.
However, the search can be accelerated using Fast Fourier Trans-
forms (FFT) [Kilthau et al. 2002; Soler et al. 2002] . For example,
we can rewrite (4) as:

C(t) = ∑
p

I2(p− t)+∑
p

O2(p)−2∑
p

I(p− t)O(p) (6)

The first two terms in (6) are sum of squares of pixel values over
sub-blocks of the image or video and can be computed efficiently in
O(n) time using summed-area tables [Crow 1984]. The third term
is a convolution of the input with the output and can be computed in
O(n log(n)) time using FFT. Since n is extremely large for images
and especially for video, we get a huge speed up using this method –
for a 150×100×30 video sequence, n≈ 106, and the time required
to search for a new patch reduces from around 10 minutes (using
naive search) to 5 seconds (using FFT-based search).

6 Image Synthesis

We have applied our technique for image and texture synthesis to
generate regular, structured and random textures as well as to syn-
thesize extensions of natural images. Figures 8, 9, and 10 show re-
sults for a variety of two-dimensional image textures. We used en-
tire patch matching as our patch selection algorithm for the TEXT,
NUTS, ESCHER, and KEYBOARD images, while sub-patch matching
was used for generating CHICK PEAS, MACHU PICCHU, CROWDS,
SHEEP, OLIVES, BOTTLES, and LILIES. The computation for im-
ages is quite fast, mainly due to the use of FFT-based search. All
image synthesis results presented here took between 5 seconds and
5 minutes to run. The LILIES image took 5 minutes because it was
originally generated to be 1280×1024 in size. We also compare
some of our results with that of Image Quilting [Efros and Free-
man 2001] in Figure 9. Now we briefly describe a few specialized
extensions and applications of our 2D texture synthesis technique.

A. Additional Transformations of Source Patches: Our al-
gorithm relies on placing the input patch appropriately and deter-
mining a seam that supports efficient patching of input images.
Even though we have only discussed the possibility of translating
the input patch over the output region, one could generalize this
concept to include other transformations of the input patch like
rotation, scaling, affine or projective. For images, we have exper-
imented with the use of rotated, mirrored, and scaled versions of
the input texture. Allowing more transformations gives us more
flexibility and variety in terms of the kind of output that can be
generated. However, as we increase the potential transformations

of the input texture, the cost of searching for good transformations
also increases. Therefore, we restrict the transformations other than
translations to a small number. Note that the number of candidate
translations is of the order of the number of pixels. We generate
the transformed versions of the input before we start synthesis. To
avoid changing the searching algorithm significantly, we put all the
transformed images into a single image juxtaposed against each
other. This makes the picking of any transformation equivalent to
the picking of a translation. Then, only the portion containing the
particular transformed version of the image is sent to the graph cut
algorithm instead of the whole mosaic of transformations.

In Figure 9, we make use of rotational and mirroring transforma-
tions to reduce repeatability in the synthesis of the OLIVES image.
Scaling allows mixing different sizes of texture elements together.
One interesting application of scaling is to generate images con-
veying deep perspective. We can constrain different portions of the
output texture to copy from different scales of the input texture. If
we force the scale to vary in a monotonic fashion across the output
image, it gives the impression of an image depicting perspective.
For example, see BOTTLES and LILIES in Figure 10.

B. Interactive Merging and Blending: One application of the
graph cut technique is interactive image synthesis along the lines of
[Mortensen and Barrett 1995; Brooks and Dodgson 2002]. In this
application, we pick a set of source images and combine them to
form a single output image. As explained in the section on patch
fitting for texture synthesis (Section 3), if we constrain some pixels
of the output image to come from a particular patch, then the graph
cut algorithm finds the best seam that goes through the remaining
unconstrained pixels. The patches in this case are the source im-
ages that we want to combine. For merging two such images, the
user first specifies the locations of the source images in the output
and establishes the constrained pixels interactively. The graph cut
algorithm then finds the best seam between the images.

This is a powerful way to combine images that are not similar
to each other since the graph cut algorithm finds any regions in
the images that are similar and tries to make the seam go through
those regions. Note that our cost function as defined in Equation (5)
also favors the seam to go through edges. Our results indicate that
both kinds of seams are present in the output images synthesized
in this fashion. In the examples in Figure 11, one can see that the
seam goes through (a) the middle of the water which is the region of
similarity between the source images, and (b) around the silhouettes
of the people sitting in the raft which is a high gradient region.

The SIGGRAPH banner on the title page of this paper was gen-
erated by combining flowers and leaves interactively: the user had
to place a flower image over the leaves background and constrain
some pixels of the output to come from within a flower. The graph
cut algorithm was then used to compute the appropriate seam be-
tween the flower and the leaves automatically. Each letter of the
word SIGGRAPH was synthesized individually and then these letters
were combined, again using graph cuts, to form the final banner –
the letter G was synthesized only once, and repeated. Approximate
interaction time for each letter was in the range of 5-10 minutes.
The source images for this example are in Figure 6.

It is worthwhile to mention related work on Intelligent Scissors
by Mortensen and Barrett [1995] in this context. They follow a two-
step procedure of segmentation followed by composition to achieve
similar effects. However, in our work, we don’t segment the objects
explicitly; instead we leave it to the cost function to choose between
object boundaries and perceptually similar regions for the seam to
go through. Also, the cost function used by them is different than
ours.

Figure 6: The source images used to generate the SIGGRAPH banner
on the title page of this paper. Image credits: (b) c©East West Photo,
(c) c©Jens Grabenstein, (e) c©Olga Zhaxybayeva.

7 Video Synthesis

One of the main strengths of the graph cut technique proposed here
is that it allows for a straightforward extension to video synthesis.
Consider a video sequence as a 3D collection of voxels, where one
of the axes is time. Patches in the case of video are then the whole
3D space-time blocks of video, which can be placed anywhere in
the 3D (space-time) volume. Hence, the same two steps from im-
age texture synthesis, patch placement and seam finding, are also
needed for video texture synthesis.

Similar to 2D texture, the patch selection method for video
must be chosen based on the type of video. Some video sequences
just show temporal stationarity whereas others show stationarity in
space as well as time. For the ones showing only temporal station-
arity, searching for patch translations in all three dimensions (space
and time) is unnecessary. We can restrict our search just to patch
offsets in time, i.e., we just look for temporal translations of the
patch. However, for videos that are spatially and temporally sta-
tionary, we do search in all three dimensions.

We now describe some of our video synthesis results. We start by
showing some examples of temporally stationary textures in which
we find spatio-temporal seams for video transitions. These results
improve upon video textures [Schödl et al. 2000] and compare fa-
vorably against dynamic textures [Soatto et al. 2001]. Then we dis-
cuss spatio-temporally stationary type of video synthesis that im-
proves upon [Wei and Levoy 2000; Bar-Joseph et al. 2001]. All
videos are available off our web page and/or included in the DVD.

A. Finding Seams for Video Transitions: Video tex-
tures [Schödl et al. 2000] turn existing video into an infinitely play-
ing form by finding smooth transitions from one part of the video to
another. These transitions are then used to infinitely loop the input
video. This approach works only if a pair of similar-looking frames
can be found. Many natural processes like fluids and small-scale
motion are too chaotic for any frame to reoccur. To ease visual dis-
continuities due to frame mismatches, video textures used blending
and morphing techniques. Unfortunately, a blend between transi-
tions introduces an irritating blur. Morphing also does not work
well for chaotic motions because it is hard to find corresponding
features. Our seam optimization allows for a more sophisticated ap-
proach: the two parts of the video interfacing at a transition, repre-
sented by two 3D spatio-temporal texture patches, can be spliced to-
gether by computing the optimal seam between the two 3D patches.
The seam in this case is actually a 2D surface that sits in 3D (Fig-
ure 7).

Input Video

Input VideoInput Video

Similar Frames

Computed

Seam

Window in

which seam

computed

Output Video

Shown in 3D

Figure 7: Illustration of seams for temporal texture synthesis.
Seams shown in 2D and 3D for the case of video transitions. Note
that the seam is a surface in case of video.

To find the best relative offset of the spatio-temporal texture
patches, we first find a good transition by pair-wise image com-
parison as described in [Schödl et al. 2000]. We then compute an
optimal seam for a limited number of good transitions within a win-
dow around the transition. The result is equivalent to determining
the time of the transition on a per-pixel basis rather than finding a
single transition time for the whole image. The resulting seam can
then be repeated to form a video loop as shown in Figure 7.

We have generated several (infinitely long) videos using this ap-
proach. For each sequence, we compute the optimal seam within a
60-frame spatio-temporal window centered around the best transi-
tion. Examples include WATERFALL A, GRASS, POND, FOUNTAIN,
and BEACH. WATERFALL A and GRASS have been borrowed from
Schödl et al. [2000]. Their results on these sequences look inter-
mittently blurred during the transition. Using our technique, we are
able to generate sequences without any perceivable artifacts around
the transitions, which eliminates the need for any blurring. We have
also applied (our implementation of) dynamic textures [Soatto et al.
2001] to WATERFALL A, the result of which is much blurrier than
our result. The BEACH example shows the limitations of our ap-
proach. Although the input sequence is rather long – 1421 frames
– even the most similar frame pair does not allow a smooth transi-
tion. During the transition, a wave gradually disappears. Most dis-
concertingly, parts of the wave vanish from bottom to top, defying
the usual dynamics of waves.

B. Random Temporal Offsets For very short sequences of
video, looping causes very noticeable periodicity. In this case, we
can synthesize a video by applying a series of input texture patches,
which are randomly displaced in time. The seam is computed within
the whole spatio-temporal volume of the input texture.

We have applied this approach to FIRE, SPARKLE, OCEAN, and
SMOKE. The result for FIRE works relatively well and, thanks to
random input patch displacements, is less repetitive than the com-
parable looped video. The SPARKLE result is also very nice, al-
though electric sparks sometimes detach from the ball. In the case

of OCEAN, the result is overall good, but the small amount of avail-
able input footage causes undesired repetitions. SMOKE is a failure
of this method. There is no continuous part in this sequence that
tiles well in time. Parts of the image appear almost static. The pri-
mary reason for this is the existence of a dominant direction of mo-
tion in the sequence, which is very hard to capture using temporal
translations alone. Next, we discuss how to deal with such textures
using spatio-temporal offsets.

C. Spatio-Temporally Stationary Videos: For videos that
show spatio-temporal stationarity (like OCEAN and SMOKE), only
considering translations in time does not produce good results.
This is because, for such sequences, there usually is some dom-
inant direction of motion for most of the spatial elements, that
cannot be captured by just copying pixels from different tempo-
ral locations; we need to move the pixels around in both space and
time. We apply the sub-patch matching algorithm in 3D for spatio-
temporal textures. Using such translations in space and time for
spatio-temporal textures shows a remarkable improvement over us-
ing temporal translations alone.

The OCEAN sequence works very well with this approach, and
the motion of the waves is quite natural. However, there are still
slight problems with sea grass appearing and disappearing on the
surface of the water. Even SMOKE shows a remarkable improve-
ment. It is no longer static, as was the case with the previous
method, showing the power of using spatio-temporal translations.
RIVER, FLAME, and WATERFALL B also show very good results
with this technique.

We have compared our results for FIRE, OCEAN, and SMOKE
with those of Wei and Levoy [2000] – we borrowed these sequences
and their results from Wei and Levoy’s web site. They are able to
capture the local statistics of these temporal textures quite well but
fail to reproduce their global structure. Our results show an im-
provement over them by being able to reproduce both the local and
the global structure of the phenomena.

D. Temporal Constraints for Video One of the advantages of
constraining new patch locations for video to temporal translations
is that even though we find a spatio-temporal seam within a window
of a few frames, the frames outside that window stay as is. This
allows us to loop the video infinitely (see Figure 7). When we allow
the translations to be in both space and time, this property is lost and
it is non-trivial to make the video loop. It turns out, however, that we
can use the graph cut algorithm to perform constrained synthesis (as
in the case of interactive image merging) and therefore looping. We
fix the first k and last k frames of the output sequence to be the same
k frames of the input (k = 10 in our implementation). The pixels in
these frames are now constrained to stay the same. This is ensured
by adding links of infinite cost between these pixels and the patches
they are constrained to copy from, during graph construction. The
graph cut algorithm then computes the best possible seams given
that these pixels don’t change. Once the output has been generated,
we remove the first k frames from it. This ensures a video loop since
the kth frame of the output is the same as its last frame before this
removal operation.

Using this technique, we have been able to generate looped se-
quences for almost all of our examples. One such case is WATER-
FALL B, which was borrowed from [Bar-Joseph et al. 2001]. We
are able to generate an infinitely long sequence for this example,
where as [Bar-Joseph et al. 2001] can extend it to a finite length
only. SMOKE is one example for which looping does not work very
well.

E. Spatial Extensions for Video We can also increase the
frame-size of the video sequence if we allow the patch translations

to be in both space and time. We have been able to do so success-
fully for video sequences exhibiting spatio-temporal stationarity.
For example, the spatial resolution of the RIVER sequence was in-
creased from 170×116 to 210×160. By using temporal constraints,
as explained in the previous paragraph, we were even able to loop
this enlarged video sequence.

The running times for our video synthesis results ranged from
5 minutes to 1 hour depending on the size of video and the search
method employed – searching for purely temporal offsets is faster
than that for spatio-temporal ones. The use of FFT-based accelera-
tion in our search algorithms was a huge factor in improving effi-
ciency.

8 Summary

We have demonstrated a new algorithm for image and video synthe-
sis. Our graph cut approach is ideal for computing seams of patch
regions and determining placement of patches to generate perceptu-
ally smooth images and video. We have shown a variety of synthe-
sis examples that include structured and random image and video
textures. We also show extensions that allow for transformations of
the input patches to permit variability in synthesis. We have also
demonstrated an application that allows for merging of two dif-
ferent source images interactively. In general, we believe that our
technique significantly improves upon the state of the art in texture
synthesis by providing the following benefits: (a) no restrictions on
shape of the region where seam will be created, (b) consideration of
old seam costs, (c) easy generalization to creation of seam surfaces
for video, and (d) a simple method for adding constraints.

Acknowledgements

We would like to thank Professor Ramin Zabih and his students
at Cornell University for sharing their code for computing graph
min-cut [Boykov et al. 1999]. Thanks also to the authors of [Efros
and Freeman 2001], [Wei and Levoy 2000] and [Bar-Joseph et al.
2001] for sharing their raw footage and results via their respective
web sites to facilitate direct comparisons. Thanks also to Rupert
Paget for maintaining an excellent web page on texture research
and datasets, and to Martin Szummer for the MIT temporal texture
database. Thanks also to the following for contributing their images
or videos: East West Photo, Jens Grabenstein, Olga Zhaxybayeva,
Adam Brostow, Brad Powell, Erskine Wood, Tim Seaver and Art-
beats Inc.. Finally, we would like to thank our collaborators Gabriel
Brostow, James Hays, Richard Szeliski and Stephanie Wojtkowski
for their insightful suggestions and help with the production of this
work. Arno Schödl is now at think-cell Software GmbH in Berlin,
Germany.

This work was funded in part by grants from NSF (IIS-
9984847, ANI-0113933 and CCR-0204355) and DARPA (F49620-
001-0376), and funds from Microsoft Research.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. 2001 ACM Sym-
posium on Interactive 3D Graphics (March), 217–226. ISBN 1-58113-
292-1.

BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND WERMAN, M.
2001. Texture mixing and texture movie synthesis using statistical learn-
ing. IEEE Transactions on Visualization and Computer Graphics 7, 2,
120–135.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 1999. Fast approximate en-
ergy minimization via graph cuts. In International Conference on Com-
puter Vision, 377–384.

BROOKS, S., AND DODGSON, N. A. 2002. Self-similarity based tex-
ture editing. ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2002) 21, 3 (July), 653–656.

BURT, P. J., AND ADELSON, E. H. 1983. A multiresolution spline with
application to image mosaics. ACM Transactions on Graphics 2, 4, 217–
236.

CROW, F. C. 1984. Summed-area tables for texture mapping. In Proceed-
ings of the 11th annual conference on Computer graphics and interactive
techniques, 207–212. ISBN 0-89791-138-5.

DEBONET, J. S. 1997. Multiresolution sampling procedure for analysis and
synthesis of texture images. Proceedings of SIGGRAPH 97 (August),
361–368. ISBN 0-89791-896-7. Held in Los Angeles, California.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for texture
synthesis and transfer. Proceedings of SIGGRAPH 2001 (August), 341–
346. ISBN 1-58113-292-1.

EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric
sampling. In International Conference on Computer Vision, 1033–1038.

FORD, L., AND FULKERSON, D. 1962. Flows in Networks. Princeton
University Press.

GREIG, D., PORTEOUS, B., AND SEHEULT, A. 1989. Exact maximum a
posteriori estimation for binary images. Journal of the Royal Statistical
Society Series B, 51, 271–279.

GUO, B., SHUM, H., AND XU, Y.-Q. 2000. Chaos mosaic: Fast and mem-
ory efficient texture synthesis. Tech. Rep. MSR-TR-2000-32, Microsoft
Research.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture analy-
sis/synthesis. Proceedings of SIGGRAPH 95 (August), 229–238. ISBN
0-201-84776-0. Held in Los Angeles, California.

KILTHAU, S.L., DREW, M., AND MOLLER, T. 2002. Full search con-
tent independent block matching based on the fast fourier transform. In
ICIP02, I: 669–672.

LI, S. Z. 1995. Markov Random Field Modeling in Computer Vision.
Springer-Verlag.

LIANG, L., LIU, C., XU, Y.-Q., GUO, B., AND SHUM, H.-Y. 2001. Real-
time texture synthesis by patch-based sampling. ACM Transactions on
Graphics Vol. 20, No. 3 (July), 127–150.

MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scissors for
image composition. Proceedings of SIGGRAPH 1995 (Aug.), 191–198.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric texture model
based on joint statistics of complex wavelet coefficients. International
Journal of Computer Vision 40, 1 (October), 49–70.

SAISAN, P., DORETTO, G., WU, Y., AND SOATTO, S. 2001. Dynamic
texture recognition. In Proceeding of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), II:58–63.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video
textures. Proceedings of SIGGRAPH 2000 (July), 489–498. ISBN 1-
58113-208-5.

SEDGEWICK, R. 2001. Algorithms in C, Part 5: Graph Algorithms.
Addison-Wesley, Reading, Massachusetts.

SOATTO, S., DORETTO, G., AND WU, Y. 2001. Dynamic textures. In
Proceeding of IEEE International Conference on Computer Vision 2001,
II: 439–446.

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchical pattern
mapping. ACM Transactions on Graphics 21, 3 (July), 673–680.

SZUMMER, M., AND PICARD, R. 1996. Temporal texture modeling.
In Proceeding of IEEE International Conference on Image Processing
1996, vol. 3, 823–826.

WANG, Y., AND ZHU, S. 2002. A generative method for textured motion:
Analysis and synthesis. In European Conference on Computer Vision.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-
structured vector quantization. Proceedings of SIGGRAPH 2000 (July),
479–488. ISBN 1-58113-208-5.

Figure 8: 2D texture synthesis results. We show results for textured and natural images. The smaller images are the example images used for
synthesis. Shown are CHICK PEAS, TEXT, NUTS, ESCHER, MACHU PICCHU c©Adam Brostow, CROWDS and SHEEP from left to right and top
to bottom.

Input Image Quilting Graph cut

Input Image Quilting Graph cut Rotation & Mirroring

Figure 9: Comparison of our graph cut algorithm with Image Quilting [Efros and Freeman 2001]. Shown are KEYBOARD and OLIVES. For
OLIVES, an additional result is shown that uses rotation and mirroring of patches to increase variety. The quilting result for KEYBOARD was
generated using our implementation of Image Quilting; the result for OLIVES is courtesy of Efros and Freeman.

Figure 10: Images synthesized using multiple scales yield perspective effects. Shown are BOTTLES and LILIES c©Brad Powell. We have, from
left to right: input image, image synthesized using one scale, and image synthesized using multiple scales.

Figure 11: Examples of interactive blending of two source images. Shown are HUT and MOUNTAIN c©Erskine Wood in the top row, and
RAFT and RIVER c©Tim Seaver in the bottom row. The results are shown in the third column. In the last column, the computed seams are also
rendered on top of the results.

WATERFALL A GRASS POND FOUNTAIN BEACH FIRE

OCEAN SMOKE SPARKLE FLAME RIVER WATERFALL B

Figure 12: The variety of videos synthesized using our approach.

	Introduction
	Related work
	Patch Fitting using Graph Cuts
	Accounting for Old Seams
	Surrounded Regions

	 Patch Placement & Matching
	Extensions & Refinements
	Image Synthesis
	Video Synthesis
	Summary

