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Figure 1: Creating an animation from video sprite samples.

Abstract

We introduce a new optimization algorithm for video sprites to ani-
mate realistic-looking characters. Video sprites are animations cre-
ated by rearranging recorded video frames of a moving object. Our
new technique to find good frame arrangements is based on re-
peated partial replacements of the sequence. It allows the user to
specify animations using a flexible cost function. We also show a
fast technique to compute video sprite transitions and a simple algo-
rithm to correct for perspective effects of the input footage. We use
our techniques to create character animations of animals, which are
difficult both to train in the real world and to animate as 3D models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.4.9 [Image Processing and
Computer Vision]: Applications—;

Keywords: video sprites, video textures, character animation, op-
timization.

1 Introduction

Research has shown that captured real images and video can be
used for modeling and rendering, which are traditionally realms of
entirely synthetic 3D models. Captured video has also been used
for animation, most markedly for animations that are very difficult
to do with traditional tools, such as facial motion [Bregler et al.

1997]. This paper focuses on the image-based generation of char-
acter animations using video sprites. Video sprites are created by
extracting a subject from a video sequence as a sequences of sprites,
and rearranging this sequence into a new animation.

In this paper, we focus on the animation of animals. The two
conventional options are either filming a real animal, which requires
intensive training of the animal and is not always possible, or cre-
ating and animating a 3D model, which is costly because natural
looking results are hard to achieve. Video sprites are a compelling
alternative. Recording the animal is cheap, natural-looking motion
comes for free because original animal footage is used, and the ani-
mation is synthesized by the computer, with little human assistance.

This paper focusses on new algorithms for generating better
video sprite animations. The only video sprite animation shown
in [Schödl et al. 2000], a fish, is constricted in two ways. First, per-
spective distortions are not corrected at all. This approach works
fine for the fish floating in water, but more interesting subjects usu-
ally walk on land and perspective distortion is a significant problem.
In this paper, we present a simple algorithm that effectively com-
pensates for changes in perspective, so that recordings of the char-
acter at one location can be reused at any other location. Second,
and more importantly, we introduce a new flexible technique for
sprite control. The control techniques in the literature [Schödl and
Essa 2001] only allow either interactive control or specification of a
simple motion path. In computer animation using modeled charac-
ters, it is common to exert more flexible control by defining a cost
function [Witkin and Kass 1988]. The animation system optimizes
the parameters of the animation to minimize the cost function, and
thereby generates the desired animation. In this paper we extend
this approach to video sprites, presenting an algorithm to optimize
the animation with respect to any user-defined cost function.

1.1 Related Work

Character animation has a long tradition in computer graphics.
Most realistic-looking animations have been generated using 3D
models. The oldest character animation technique for models is
keyframing [Lasseter 1987; Dana 1992]. 3D models are posed man-
ually by the artist at some keyframes, and their motion is smoothly
interpolated in between the keyframes using splines. The technique
has the advantage of being relatively intuitive to use, because the
artist directly controls the output.

Instead of defining keyframes, motions can also be defined us-
ing cost functions. The internal motion parameters are then op-
timized automatically to minimize this function [Witkin and Kass
1988; Cohen 1992; Ngo and Marks 1993]. In this paper, we are
using such cost functions to control the animation of video sprites.
Cost functions can be combined with physical simulations to en-
sure that all generated motion parameters are physically plausible
[Hodgins et al. 1995; Laszlo et al. 1996; Hodgins 1998].

The third option for controlling characters is to use data cap-
tured from the real world. A motion capture system produces a
low-dimensional representation of a character’s pose over time by



tracking markers, which drives a 3D model. Several researchers
have proposed algorithms to transform motion capture data in or-
der to extend its range of applicability [Rose et al. 1998; Popovic
and Witkin 1999; Gleicher 1998]. Others have proposed marker-
less motion capture through analysis of video to drive animations
of 3D models, both for faces [Essa et al. 1996; Terzopoulos and
Waters 1993; Williams 1990] and for whole body models [Bregler
and Malik 1998].

A disadvantage of the described techniques is the need for ac-
curate 3D models of the characters to animate. Image-based ren-
dering avoids such models by using images captured from real
scenes to create new renderings. The early work mainly deals with
static scenes, which are rendered from different positions and view-
ing directions. For a purely rotating camera, this amounts to cre-
ating panoramic views by image stitching [Chen 1995; Szeliski
and Shum 1997]. If some limited camera motion is desired, one
can either directly create a representation of the plenoptic function
[McMillan and Bishop 1995; Gortler et al. 1996; Levoy and Hanra-
han 1996] or use approximate knowledge about 3D geometry [Seitz
and Dyer 1996; Debevec et al. 1996].

To overcome the limitation of still scenes, the computer vision
community has developed some scene motion models. Most of
them work best with unstructured motion of fluids like water or
smoke. They can be roughly classified as either parametric tech-
niques [Szummer and Picard 1996; Soatto et al. 2001; Fitzgibbon
2001] or non-parametric techniques [Wei and Levoy 2000; Bar-
Joseph 1999]. The non-parametric techniques were developed on
the basis of prior work on image texture synthesis [Wei and Levoy
2000; Bonet 1997; Heeger and Bergen 1995].

Recently, sample-based techniques that play back pieces of the
original video have been introduced to create animations. They are
better suited for structured motions than other techniques, because
they preserve most of the image structure. Bregler et al.[1997] cre-
ate lip motion for a new audio track from a training video of the
subject speaking by replaying short subsequences of the training
video fitting best to the sequence of phonemes. Cosatto shows a
similar system for more general facial motion [Cosatto and Graf
1998]. More recently, video textures [Schödl et al. 2000] have been
introduced as a more general approach suitable for many types of
motions. Video sprites [Schödl and Essa 2001] are an extension to
video textures aimed at animating moving objects. Recently, the
video texture idea has inspired approaches that rearrange motion
capture data using video texture-like algorithms to generate new
animations [Lee et al. 2002; Arikan and Forsyth 2002; Kovar et al.
2002].

1.2 Overview

The paper mainly focusses on a new sprite optimization technique,
but also describes the rest of the video sprite pipeline that is neces-
sary to turn video sprites into a practical animation tool. We focus
on animating animals because they are naturally quite difficult to
direct and therefore our techniques for generating realistic anima-
tions give the most compelling results.

The animation pipeline starts by capturing videos of the desired
characters, for this paper a hamster and a fly, in front of a green
screen. Using background subtraction and chroma keying tech-
niques, we extract the animals from the background (Section 2).
This results in sequences of sprites, little bitmaps with opacity in-
formation, that are the basic elements of our animation. After cor-
recting perspective distortion of the sprites, especially apparent size
changes due to motion in the depth direction, we find sprite pairs
that are suitable to serve as transition points from one location in
the video to another (Section 3). Then we define a cost function that
describes the sprite animation that we want to generate (Section 5)
and find a frame sequence that minimizes this cost function (Sec-
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Figure 2: Overview of our processing pipeline.

tion 4). Finally, the video sprites are composited onto the desired
background. Section 6 shows some results for both the hamster and
the fly input sequences. The whole pipeline is shown in Figure 2.

2 Sprite extraction

To generate video sprites, the subjects are first recorded with one or
multiple cameras, while they are roaming suitable enclosures lined
with green paper for chroma keying. Figure 3 shows the hamster
and fly enclosures. We then use chroma keying to separate the sub-
jects from the background. During video capture, the subject of-
ten either touches the walls of its enclosure or casts shadows onto
them. All footage where the subject is not entirely surrounded by
the ground plane is automatically discarded to avoid visual arti-
facts. Since both subjects, like most animals, are laterally symmet-
rical, the amount of available training data is doubled by horizon-
tally mirroring the footage. During the recording, the subjects are
lit diffusely from above. Thus, using mirrored footage and mix-
ing footage from multiple cameras does not introduce any shading
artifacts.



Figure 3: Examples of raw input video frames.
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Figure 4: Correction for size varying with depth and perspective
distortion.

2.1 Perspective correction

The recorded subject is likely to be seen from different perspec-
tives; most importantly the sprite size will change when the subject
moves away from or toward the camera. Since both the hamster and
the fly move on a flat ground plane, we compensate for that effect
by reprojecting the camera image onto a hypothesized simple world
geometry. The recording cameras are calibrated internally and ex-
ternally in relation to the ground plane on which the subject moves
[Bradksi and Pisarevsky 2000; Zhang 1998]. We assume that the
subject is a plane, which is standing vertically on the ground plane,
facing the camera like a billboard. We determine the subject’s loca-
tion in 3D by intersecting a ray from the camera through the low-
est sprite point with the ground plane (Figure 4). Projecting the
camera image onto this hypothesized geometry corrects for most
perspective effects, and this corrected image is used for the subse-
quent steps of the algorithm. In the final rendering step, we perform
perspective projection of the billboard image back into the virtual
camera.

3 Defining transition costs

The main principle of generating video sprite animations is to find
pairs of frames in the video sequence that are sufficiently similar so
that they can be used for transitions from one part of the sequence
to another without noticeable jerks. After correcting all sprite im-
ages for perspective correction, we compute pair-wise sprite image
differences to find suitable transitions.

To decide similarity between frames, we compute six difference
features for every sprite pair. It is hard to design a function that ex-
presses human perception of similarity for a particular group of im-
ages. So we learn this function from examples, following [Schödl
and Essa 2001]. We classify about 1000 pairs of sprite images
manually as acceptable or not acceptable for a transition, includ-
ing roughly the same number of examples from each of the two
categories. Then we train a linear classifier which operates on the
difference features.

To speed up computation, two different classifiers are actually
used. The first linear classifier operates on a group of four features.
These are precomputed for all sprites and can be compared effi-
ciently: sprite velocity, average sprite color, sprite area, and sprite
eccentricity. Only to sprite pairs that pass this first test is an addi-
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Figure 5: To make a transition from frame i to frame j, frame i
should be similar to frame j−1 and frame j similar to frame i+1.

tional linear classifier applied. This classifier uses two more differ-
ence features, the pixel-by-pixel differences in alpha value and the
pixel color of the perspective-corrected sprite images. Both require
access to the actual image data for every comparison and are there-
fore relatively slow to evaluate. This two-stage approach typically
reduces computation time by about two orders of magnitude.

All sprite pairs that either classifier rejected are no longer consid-
ered for transitions. If the pair of samples i and j is kept, we use the
value of the second linear classifying function, operating on all six
features, as a measure for visual difference Di j . We use the visual
difference to define the cost of a transition. For a transition from
frame i to frame j, frame i’s successor must be similar to frame j
and frame j’s predecessor must be similar to frame i. Thus, the cost
Ci→ j of a transition i → j is (Figure 5)

Ci→ j = D(i+1) j +Di( j−1). (1)

4 Controlling Video Sprites

After computing the available transitions between frames, the linear
sequence structure turns into a directed graph. The nodes of the
graph represent frames, and the directed edges represent transitions
from one frame to another. A frame sequence S = {s1, . . . ,sn} is
represented by a path in this graph. The transitions or edges on this
path have to be visually smooth, which we express by a smoothness
cost function Cs:

Cs(S) =
n−1

∑
i=1

Csi→si+1 (2)

We also want the sequence of frames or nodes of the graph to
show the desired animation, for example a walk from left to right.
We can express this by specifying an additional control cost func-
tion Cc. Designing a control cost function is a trade-off between
more precise sprite control and smoother transitions. Good control
cost functions only constrain the aspects of motion that are critical
for telling the story. In Section 5 we give some examples of useful
control cost functions.

The total sequence cost C is the sum of the two components:

C(S) = Cs(S)+Cc(S). (3)

To create a controlled sprite animation, we want to find the se-
quence S of frames for which the total cost C is minimal:

S = argmin
S

C(S). (4)

4.1 Limitations of current video sprite optimization
techniques

Schödl and Essa [2001] have suggested two video sprite optimiza-
tion techniques that work well for some classes of motions, but have



serious limitations for more general animations. The first algorithm
is a simple iterative learning technique known as Q-learning [Kael-
bling et al. 1996], which is only practical for interactive control.
For scripted animations, they suggest beam search, which works
by maintaining a set S of partial transition sequences. In every step
of the algorithm, a new set of sequences S ′ is generated, which con-
tains for each sequence S = {s1...sn} ∈ S all possible extensions of
that sequence by another frame sn+1. Then the cost of all extended
sequences in S ′ is computed, and the N best sequences in S ′ are
kept and further extended in the next iteration. Over all iterations,
the algorithm keeps track of the best sequence encountered so far.

This algorithm works well for cost functions that have a tight
coupling between transition choices and cost, i.e., where the
choice for the current transition has no grave unforeseeable con-
sequences in the future. But for many other cost functions, beam
search fails. In particular, among sequences of a length k, the func-
tion C must prefer those sequences that are good starting points,
which, when further extended, lead to a good minimum of C. The
number of subsequences that beam search concurrently evaluates
only provides a very limited look-ahead, because the number of
possible sequence continuations quickly multiplies with every ad-
ditional transition.

Given this limited look-ahead, evaluating the potential of an ex-
tended sequence based on a limited starting subsequence is difficult
for many interesting cost functions. For example, if the goal is to
be at a certain point at a certain time, it is unknown a-priori what
options the sprite has for getting to the goal and how long it will
take. Other important examples are cost functions that link multi-
ple video sprites, driving sprites to avoid collisions with each other
or to walk in a desired formation. In these cases, the frame se-
quences of the sprites involved should be optimized jointly. Here
the cost function C operates on two or more sequences, and instead
of extending a single sequence by a single transition, two or more
sequences must be extended by any combination of two or more
transitions. This exponentially increases the number of transition
variants and further reduces the average look-ahead.

4.2 Optimization by repeated subsequence replace-
ment

The main problem of beam search is its sequential mode of opera-
tion. The algorithm effectively commits to a sequence of transitions
in order, and there is no possibility to go back and make corrections.
As an alternative, this paper presents a hill-climbing optimization
that instead optimizes the sequence as a whole, and determines the
transitions in no particular order. It starts with an initial random se-
quence, and repeatedly tries to change the sequence. It only keeps
those changes that lower the cost. It would be nice to use global
optimization techniques instead of greedy hill-climbing, but unfor-
tunately the computational demand of these techniques that work by
keeping track of multiple sequence candidates or allowing tempo-
rary cost increases to avoid local minima is excessive for the prob-
lem at hand.

A key component of the algorithm is its method to make changes
to an existing transition sequence. The most obvious way to make
a change to a sequence is to replace one frame of the sequence with
another one. Unfortunately, this is rarely possible. Given the se-
quence s1, . . . ,sn, replacing sk with some new frame t results in the
sequence s1, . . . ,sk−1, t,sk+1, . . . ,sn, which requires two new tran-
sitions sk−1 → t and t → sk+1. It is highly unlikely that both transi-
tions are available and have reasonably low cost. Instead of replac-
ing a single frame in the sequence, it is better to replace a whole
subsequence. Given two locations in the sequence k and l, we re-
place the subsequence sk, . . . ,sl with a sequence that connects sk
and sl in some new way.

In order to find a good subsequence to connect sk and sl , we
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Figure 6: A single optimization step, replacing a middle subse-
quence.

heuristically pick a cost function Ĉ that is context-free, so it can
be formulated as a sum of per-transition costs and approximates
the total sequence cost function C. In practice, we simply use the
smoothness component of C:

Ĉ = Cs. (5)

Since Ĉ can be formulated as a sum of per-transition costs, for any
pair of frames i and j, Dijkstra’s algorithm can precompute the
lowest-cost transition sequence between frames i and j with respect
to Ĉ, S∗(i → j). Unfortunately, S∗(sk → sl) is not a good subse-
quence to connect sk and sl , because for any chosen cost function
Ĉ, any subsequence of a path optimal with respect to Ĉ will itself
be optimal. After enough replacements, the whole sequence will be
optimal with respect to Ĉ, but not necessarily with respect to C and
no further replacement would introduce any more changes. Instead,
we pick a state t and replace sk, . . . ,sl with S∗(sk → t)S∗(t → sl) (of
course, t is inserted in the middle only once), which allows the gen-
eration of a large variety of sequences.

Which frames t are suitable to generate subsequences? If Ĉ ap-
proximates C well, to minimize C it is reasonable to consider candi-
dates t that lead to small values of Ĉ. Before starting the optimiza-
tion, we use Dijkstra’s algorithm to precompute (for every input
frame i) the set of N frames t for which the sequences S∗(i → t)
have the lowest costs with respect to Ĉ. Those t form the set F(i)
(for f orward transitions). Similarly, for every frame i, the N ts with
the lowest-cost paths S∗(t → i) form the set B(i) (for backward tran-
sitions) (Figure 6). Typically, each set forms a tree that has long
branches of many continuous frames with few transitions. After
choosing a subsequence sk, . . . ,sl to replace, the optimization tries
all t in the intersection of the respective forward and backward sets
F(sk)∩B(sl) until it finds a t that lowers the total sequence cost
C. Since the subsequence sk, . . . ,sl that is replaced usually has few
transitions (with little accumulated cost), sk is likely to lie in B(sl)
and sl is likely to lie in F(sk), and thus F(sk)∩B(sl) is not empty.
If the intersection is empty or there is no subsequence that improves
the cost, the algorithm tries a different pair (k, l).

So far, we have only discussed how to change a middle piece of
the sequence. The beginning and end can be modified even more
easily. After picking a frame l, the algorithm simply replaces the
beginning of the sequence s1, . . . ,sl by S∗(t → sl), trying all t ∈



B(sl). Similarly, to replace the end sk, . . . ,sn by S∗(sk → t), it tries
all t ∈ F(sk).

To perform the optimization, the algorithm starts with a sequence
that is either randomly initialized or for example computed by beam
search. It then repeatedly picks random pairs k and l (k≤ l) and tries
different replacements, as described above. This process repeats
until it cannot find any more replacements that improve the total
cost C.

5 Control cost functions

In this section we describe useful control cost components to
achieve specific effects of motion control. Since video sprite anima-
tions are generated by playing back from a set of recorded samples
with a limited number of transitions, there is only a discrete number
of smooth sprite sequences available. When applying an animation
constraint, the animator has to strike a balance between achieving
the desired motion and the animation smoothness. This makes it
more critical than for 3D model animations to keep the control cost
function as lenient as possible.

The control cost is calculated with respect to the whole anima-
tion sequence which can involve multiple sprites. For each time
step i, the current state of a sprite is a triplet (p,v, f )i, where p is
the location of the sprite, v is the sprite’s velocity and f the input
frame where the current sprite image is copied from. A particular
control cost c at time step i, ci, depends on the sprite states of the
one or more sprites in the animation:

ci = f((p1,v1, f1)i,(p2,v2, f2)i, . . .) (6)

The total control cost Cc is the sum of costs over all constraints and
time steps. In the following paragraphs, we describe the types of
control functions used to generate results for some common motion
constraints.

5.1 Location constraint

Here is a very simple cost function to constrain a sprite to a partic-
ular location at time step i:

ci(p) = γ(p− ptarget)
2 (7)

ptarget is the target location of the sprite and γ is a coefficient con-
trolling the strength of the contraint. By calculating ptarget based
on some other sprite’s location and velocity, this constraint can also
be used for sprite formations.

5.2 Path constraint

This constraint makes the sprite move down a path that has been
defined using line segments. It must be implemented somewhat
differently than the location constraint. The latter would either, if
it is weak, not assure that the sprite takes a straight path, or if it is
strong, favor fast sprite movement to the target over smooth move-
ments. The constraint must penalize any deviation from the defined
path and favor the right movement direction.

We use the same cost function as Schödl and Essa [2001], con-
straining only the motion path, but not the velocity magnitude or
the motion timing. The path is composed of line segments and the
algorithm keeps track of the line segment that the sprite is currently
expected to follow. For each frame, one function component pe-
nalizes the Euclidian distance between the current sprite position
and the current line segment. The second one causes the sprite to
maintain the right direction toward the end of the path. This second

component depends on the angle between the current sprite velocity
and the line segment:

ci(p,v) = δ|� v− � vtarget|+φ((p− ptarget)· ⊥ vtarget)
2, (8)

where vtarget and ptarget are the unit direction vector and the end-
point, respectively, of the current line segment. � is an operator
to compute the angle of a vector, and δ and φ are again strength
coefficients. In addition, we use a special constraint for the last
frame of the sequence that penalizes any portion of the path that the
sprite has not reached at all. It measures the distance missing on
the current line segment and the lengths of all path segments that
have not yet been reached. This penalty drives the sequence to get
increasingly longer until the sprite actually moves along the whole
path.

5.3 Anti-collision constraint

This pairwise constraint prevents two sprites from colliding with
each other. We use a simple conical error surface to avoid colli-
sions:

ci(p1, p2) = µmax(dmin −‖p1 − p2‖2,0). (9)

dmin is the desired minimum distance between the two sprites. To
avoid numerical instabilities, we do not use errors that rise faster,
like hyperbolics. A large strength coefficient µ still gives the de-
sired effect. This constraint can also be used to control the elbow-
room needed for flocking. Narrow functions let characters bump
into each other, wide ones leave plenty of personal space.

5.4 Frame constraint

Sometimes it is useful to force a sprite to be copied from a certain
group of frames G, which for example show the sprite in a particular
pose. This can be achieved by simply adding a fixed cost λ per
frame if the condition is not met:

ci( f ) =
{

0 if f ∈ G,
λ otherwise (10)

6 Results

After optimization, the system plays back the generated sprite se-
quence and projects the sprite images into a virtual camera, using
simple depth-sorting to handle overlapping sprites. The animation
is then composited onto a natural background. To get a clean com-
posite, the system uses the alpha channel and contact shadows ex-
tracted using chroma keying.

6.1 The hamster

The hamster data set was generated from 30 minutes of hamster
footage, yielding 15,000 usable sprite frames, or 30,000 after mir-
roring. The first example animation (Figure 7a) uses a path con-
straint that makes the hamster run around in a circle. The video on
the website shows various stages of the optimization, in increments
of 30 seconds of processing time.

The second example (Figure 7b) shows the hamster loitering at
the screen center, but he manages to move out of the way in time
before a large pile of conference proceedings crashes down. The
optimization by subsequence replacement can handle constraints
that require a larger look-ahead than beam search would be able
to handle. To start, we use a weak location constraint to keep the
hamster near the center of the screen. At 4 seconds later – the time
of impact – we use a stronger hamster location constraint that favors



the far right corner, without specifying the specific path he should
take. The optimization correctly anticipates the change in cost and
moves the hamster out of harm’s way.

In the next scene (Figure 7c) we add another hamster that is mov-
ing to the left side, crossing the first hamster’s path. We use simi-
lar location constraints for both hamsters, but add an anti-collision
constraint between the two. We optimize the sum of both hamsters’
cost in turns of approximately 100 random changes, always chang-
ing only one path while keeping the other constant.

The optimization can also incorporate character actions. The
next sequence (Figure 7d) shows the hamster entering the scene,
and after following a curved path that we created using the path con-
straint, he stands up on two legs and looks at the audience. We man-
ually classified all desirable input sprite frames where the hamster is
standing up facing the viewer, and once the hamster reaches the bot-
tom of the path, we add a frame constraint to the cost function for
2 seconds (Section 5.4). Unfortunately, the desired frames show-
ing the hamster standing up are very rare among the recorded sprite
frames. We therefore found it necessary to adapt the approximat-
ing cost function Ĉ used for computing replacement subsequences.
We look for the condition when the cost function C includes the
frame constraint for the majority of frames in the subsequence that
has been selected for replacement. We then use a modified approx-
imating cost function Ĉ that also includes the frame constraint to
compute S∗ (Section 4.2).

In the last hamster sequence (Figure 7e), we add a second ham-
ster that is constrained to stay in a formation with the first using
a location constraint. The target location changes for each frame
depending on the first hamster’s location and velocity. Addition-
ally, the second hamster also shares the first one’s frame constraint,
which makes the second stand up at the same time as the first.

6.2 The fly

For the second subject, the fly, we use one hour of raw video
footage, from which we extract, after automatically discarding ex-
tended periods with no motion, 28,000 usable sprite frames, dou-
bled to 56,000 by mirroring. A special challenge was that despite
our efforts to eliminate ranges of frames with no motion, most sprite
images still showed a fly moving in place instead of crawling. To
generate the animation, we need a more animated fly, which we
create by modifying Ĉ to favor frames with large velocity.

The fly example is in fact created not by fixing the sprites’ start
locations as in the other examples but by fixing their end locations
to match the grid, leaving the start positions unconstrained. We
use animation length constraints for each fly that penalize anima-
tion sequences under 100 frames (3.3 seconds) and many pairwise
anti-collision constraints to generate the animation. In the final an-
imation, only two pairwise anti-collision constraints are violated,
but these violations are hard to pick out in the busy scene. This ani-
mation took one day to compute, much longer than any of the other
results.

7 Future work and conclusion

Animating video sprites is still a challenging problem. Certain
footage like the fly data set only has a limited number of useful
motions and only a few transitions connecting them. Thus not all
motions can be animated. In addition to the hamster and the fly, we
have also captured 2 hours each of a cat and a ferret, but both se-
quences lacked enough transitions to even make a straight left-right
walk possible because the animals hardly moved, probably scared
by the all-green environment.

A promising avenue of future research in video sprites is real-
time data capture, sprite extraction and transition finding. Currently
capturing more than a couple of hours of sprite video is impractical,

and a lot of time is wasted on storage and retrieval of large amounts
of video. Storing only usable sprite data would increase memory
and storage efficiency. Data capture would take place in a more
natural larger environment that the animal would roam at leisure.

Warping techniques could allow transitions between less similar
sprites. A major challenge is that warping is slow and can never
be applied to all frame pairs, so any fast rejection algorithm must
predict well whether the warp is worth trying. In the work on com-
puting transitions, we were often surprised how sprites with very
similar features such as color and shape can still be very different
in more subtle aspects such as pose or perspective. To simplify the
problem, future research could be directed more specifically toward
a certain class of video sprites, for example humans. However, ex-
pectations for human animations are much higher than for animals.
For example, human facial and hand motions are often important
for convincingly conveying a story.

When recording video sprites, we undistort for perspective ef-
fects mainly to obtain more sprite transitions by making sprite im-
ages more similar to each other. We assume that we can undo the
distortion to the extent that a frame recorded from one viewing an-
gle can be used for any other viewing angle. This is a reasonable
assumption for long focal lengths, relatively small depth variations
of the scene, and a virtual animation camera with a similar azimuth
as the recording camera. If these assumptions do not hold, one op-
tion is to use a better 3D geometry approximation than the planar
one used in this paper to better compensate for perspective. But ac-
curate 3D geometry is difficult to obtain, especially if the subject is
deforming non-rigidly while it is moving. Alternatively, we could
add an additional constraint into the sequence optimization which
finds sprite sequences that are not only smooth and show the desired
action, but are also showing the object from a viewing angle similar
to the one of the virtual camera. Using multiple cameras with dif-
ferent azimuths would increase the amount of available sprite data,
seen from different viewing angles. This approach would be con-
ceptually similar to unstructured lumigraphs [Buehler et al. 2001].

In conclusion, we have presented new techniques for character
animation with video sprites. We introduced a fast rejection tech-
nique for computing video sprite transitions, presented a correction
for perspective effects, and most importantly, showed a new pow-
erful algorithm to generate animations, which are specified by cost
functions and impossible to create using previous techniques.
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SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. A. 2000.
Video textures. Proceedings of SIGGRAPH 2000 (July), 489–498. ISBN
1-58113-208-5.

SEITZ, S. M., AND DYER, C. R. 1996. View morphing: Synthesizing 3d
metamorphoses using image transforms. Proceedings of SIGGRAPH 96
(August), 21–30. ISBN 0-201-94800-1. Held in New Orleans, Louisiana.

SOATTO, S., DORETTO, G., AND WU, Y. N. 2001. Dynamic textures.
In Proceeding of IEEE International Conference on Computer Vision, II:
439–446.

SZELISKI, R., AND SHUM, H.-Y. 1997. Creating full view panoramic mo-
saics and environment maps. Proceedings of SIGGRAPH 97 (August),
251–258. ISBN 0-89791-896-7. Held in Los Angeles, California.

SZUMMER, M., AND PICARD, R. W. 1996. Temporal texture modeling.
In Proceeding of IEEE International Conference on Image Processing,
vol. 3, 823–826.

TERZOPOULOS, D., AND WATERS, K. 1993. Analysis and synthesis of
facial image sequences using physical and anatomical models. IEEE
Transactions on Pattern Analysis and Machine Intelligence 15, 6, 56–
579.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-
structured vector quantization. Proceedings of SIGGRAPH 2000 (July),
479–488. ISBN 1-58113-208-5.

WILLIAMS, L. 1990. Performance-driven facial animation. Computer
Graphics (Proceedings of SIGGRAPH 90) 24, 4 (August), 235–242.
ISBN 0-201-50933-4. Held in Dallas, Texas.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. Computer
Graphics (Proceedings of SIGGRAPH 88) 22, 4 (August), 159–168.
Held in Atlanta, Georgia.

ZHANG, Z. 1998. A flexibe new technique for cam-
era calibration. Tech. Rep. 98-71, Microsoft Research.
www.research.microsoft.com/∼zhang/Calib/.



Controlled Animation of Video Sprites: A. Schödl and I. Essa
a)

b)

c)

d)

e)

f)

Figure 7: The generated hamster and fly animations. Sequence a) shows the hamster walking in a circle. The video illustrates the optimization
process by showing various intermediate steps. Sequence b) demonstrates the ability of the iterated subsequence replacement algorithm to
anticipate changes in the error function, in this case guiding the hamster out of harm’s way in time. Sequence c) is similar to b), but involves
two hamsters that are constrained not to collide. Sequences c) and d) include a sprite action at the end; the hamster stands up, looking at
the audience. The second hamster follows the first and imitates its actions. Sequence e) shows 64 flies arranging on a grid. It demonstrates
collision avoidance on a large scale.


