
An Efficient Algorithm for Scatter Chart Labeling

Sebastian Theophil
sebastian@theophil.net

Institut für Informatik
Humboldt-Universiẗat zu Berlin

Unter den Linden 6
10099 Berlin

Germany

Arno Schödl
aschoedl@think-cell.com

think-cell Software GmbH
Invalidenstr. 34
10115 Berlin

Germany

Abstract

This paper presents an efficient algorithm for a new variation
of thepoint feature labeling problem. The goal is to position
the largest number of point labels such that they do not inter-
sect each other or their points. First we present an algorithm
using a greedy algorithm with limited lookahead. We then
present an algorithm that iteratively regroups labels, calling
the first algorithm on each group, thereby identifying a close
to optimal labeling order. The presented algorithm is being
used in a commercial product to label charts, and our eval-
uation shows that it produces results far superior to those of
other labeling algorithms.

Introduction
The problem of labeling points in the plane has been studied
extensively. In its simplest form, the so-called point fea-
ture labeling problem (PFLP) consists of a set of points,
each with a corresponding label. Each label can be placed
at a discrete number of positions. Label-label intersec-
tions are not allowed. This problem was first described
in the context of labeling geographic maps (Imhof 1975;
Hirsch 1982). An alternative formulation called the slid-
ing label model (van Kreveld, Strijk, & Wolff 1999) al-
lows the labels to be placed at any position as long as it
touches its point. Both instances have been shown to be NP-
complete (Marks & Shieber 1991; Formann & Wagner 1991;
Iturriaga & Lubiw 1997). Naturally, when more label posi-
tions are available, labeling results improve and more labels
can be placed. In (van Kreveld, Strijk, & Wolff 1999) a
2-approximation algorithm is developed that has been ex-
tended in (Strijk & van Kreveld 1999) to place labels with
varying height while respecting line-type geometric con-
straints. Very recently, a force-based labeling algorithm has
been proposed in (Ebner, Klau, & Weiskircher 2003) show-
ing excellent results when compared to the sliding label 2-
approximation algorithm. It performed even better than sim-
ulated annealing, which performed best in the survey paper
by Christensen et al. (Christensen, Marks, & Shieber 1995).

From a user’s perspective, all these approaches suffer
from a serious drawback. Even small dense problem in-
stances as in Fig. 1 cannot be labeled satisfactorily because

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Simple problem instance were PFLP algorithms
fail (left) and a possible resolution (right).

label positions are restricted to positions adjacent to each
label’s point. In most real-world cases however, the points
will not be evenly distributed in the plane but they will con-
centrate in high-density clusters. We define a scatter chart as
a set of points with rectangular labels, each of arbitrary di-
mensions. It is not only common among business charts but
also among scientific illustrations. User expectation in such
a chart is to show all labels the user has defined, if necessary
with leader lines. We found that often, leader lines improve
legibility in dense and hence confusing cases because they
make the relation between a point and a label explicit. Thus,
scatter chart labels can be placed at an arbitrary position but
when a label is not adjacent to its point, both have to be con-
nected by a leader line.

We therefore propose an algorithm for the scatter chart
labeling problem (SCLP) which is an extension of the clas-
sic PFLP. Constraints disallow intersections between points,
labels and leader lines. Additional constraints may include
chart axes and their respective labels. Two criteria need to be
optimized when searching for a scatter chart labeling: First,
the number of placed labels must be maximized, and second,
the total length of all leader lines must be minimized.

Since the algorithm is meant to be used in an interactive
setting, to avoid user confusion, it must produce the same
labeling in every run on the same problem. Thus, algo-
rithms must be made deterministic if necessary. Of course,
the interactive application setting also demands a fast algo-
rithm which is able to produce results at interactive speed.
In a real-world application it is also necessary to allow user
control of label placement as argued by (do Nascimento &
Eades 2003) and implemented by (Müller & Scḧodl 2005).

SCLP is shown to be NP-hard by reduction of discrete
PFLP but the SCLP problem is much more complex than the
discrete or sliding label PFLP problem. The search space
of allowed label positions is much larger, and labeling de-

!"

!#

!$

%

$

#

"

&

'

(

)

*

+

$%

!" !# !$ % $ # " & ' () * + $%

,-./0-

1233-45

164.67

897:0;<=8>?@A

BA=C27.<674

D27567

D0236.70E=@F=BG

HI@A=1J

C-.2 HG@K=CLFA

F-40;<

F?=@8M

NLIO>C=11@A

IBD@C

BA=I632.6=D27567

A97/60PP-4E6

BA=F6Q64;6=,2R0;.0E;

D27567=124.72P

I23-40-

FAAOH=#

C>8M=! >NA

D0236.70E=@F=NLI

BA=?27E6;=86P6E23=L972S6

C6T=C>8M=UV

N673-4=11@A

IBD@C

BA=FUA!$

F@AC=FNA

DMAW46.

X

Y

CL81LC8A

ULIGB,LA

CL81LC8A

>8,>A

D0236.70E

@F=LAH
BA=C-/Z

?96P=16PP;

BA=U9;:Z

,0.<9-40-

1233-45=164.67

BA=A29.<674

1233-45

>8,>A

C>8M=@FA

@8LA=#

B[\6:0;.-4

1233-45

164.67

>A@

D27567=124.72P

1-4-5-

BA=O0P0.-7Z=O-0P

1L,,F>I

BA=]@A@8=A9\E24.7-E.

BA=]@A@8=A9\E24.7-E.

1L,,F>I

BA=O0P0.-7Z=O-0P

D0236.70E=@F=IBA

>A@

B[\6:0;.-4

1233-45

164.67

@8LA=#

C>8M=@FA

D0236.70E=@F=IBA
BA=A29.<674

1233-45

,0.<9-40-

1233-45=164.67

BA=U9;:Z
BA=C-/Z

?96P=16PP;

D0236.70E

@F=LAH

ULIGB,LA

D27567=124.72P

1-4-5-

Figure 2: Example for a dense scatter chart and its labeling.

cisions may have large-scale effects, because especially in
difficult cases, labels are no longer necessarily close to their
points.

Solution Idea

In the sliding label model described by van Kreveld et al.
the set of points of possible label centers form a rectangle
around the point to be labeled. By clipping the rectangle’s
four line segments, the label can be constrained to positions
where it does not intersect other labels or general line fea-
tures. Our algorithm extends and generalizes this idea. In
order to treat the complexity of the SCLP problem we dis-
cretize the angles at which labels can be placed around their
point. A set of rays originating at each point define possible
positions of the label center. Each ray carries information of
free label position intervals along the ray, at which the label
rectangle does not intersect other features. Whenever the al-
gorithm fixes a label position, it updates the free intervals of
rays belonging to other labels. We found 128 rays to result in
aesthetically very pleasing solutions. At this resolution, the
effect of only allowing discrete angles is not noticeable. We
tried fewer than 128 rays but the results were less pleasing
both by subjective human judgment as well as by objective
measures when the number of rays became too small (< 32).

We solve the SCLP problem by using two largely inde-
pendent algorithms. The first algorithm calculates the actual
point labeling. When placing a label, the algorithm leaves as
much space as possible for the remaining labels to be placed.
Therefore, for each label placement, we need a measure for
the remaining amount of valid label positions. We use the in-
tegral of a strictly decreasing function over the free intervals
of a ray as a measure of this ray’s free space. Consequently,
the sum of all ray integrals belonging to one point is a mea-
sure for a label’s free space. At each step of the algorithm,
the decision which label to place is made based on maximiz-
ing the minimum remaining space for any other label. This
limited lookahead is not sufficient to prevent obstruction of
subsequently placed labels. The second algorithm improves
the results of the first algorithm by finding a point partition-
ing into subsets and an order in which to pass these subsets
to the first algorithm for labeling.

!i

pi

φi
di !k

!j

Figure 3: The scatter chart labeling problem.

!i

pi

ri,j

!k

Figure 4: Representing a rayri,j as an interval setIi,j con-
taining the intervals of free label positions (solid lines).

The RayIntersection Algorithm
We first describe the algorithm used to solve the problem of
finding a valid labeling for a given set of points. A set of
available pointsP ⊆ P0 is given,P0 being the set of all
points which need to be labeled, and eachpi ∈ P has a label
`i.

The position of each label̀i can be described in polar
coordinates(φi, di) (Fig. 3). The SCLP problem can be de-
fined as the problem of assigning pairs(φi, di) to as many
labels`i as possible, such that the total length of all leader
lines

∑
i di is minimized while avoiding intersections be-

tween labels, their leader lines and all points.
As already described, the main idea is to allow only a set

of discrete values for the label’s polar angleφi. Thus, each
point pi ∈ P consists of a set ofR rays where the j-th ray
ri,j has an angle ofφi,j = 2π/R·j, alternatively represented
as the unit vector~vi,j .

The rays define possible positions of the label center.
On each rayri,j , the free label positions are a set of in-
tervals Ii,j as illustrated in Fig. 4. We definedi,j :=
min{a | [a, b) ∈ Ii,j} as the free label position closest
to point pi on ray ri,j . Initially, all intervals in which la-
bels`i intersect other points are removed fromIi,j . Given
a point pk and a label̀ i on ray ri,j with the associated
vector~vi,j , the function LABELPOINTINTERSECTIONcom-
putes the interval[a, b) in which labels intersect the point:
∀ t ∈ [a, b) area(`i translated by~vi,j · t) ∩ area′(pk) 6= ∅.
The function setsb = ∞ if vector ~vi,j itself intersectspk,
which means that the label cannot be moved beyond the ob-
structing point without causing its leader line to intersect
this point. A similar function LABELRECTANGLEINTER-
SECTION is also defined which, given a label`k and a label
`i on rayri,j with the associated vector~vi,j , computes the
interval[a, b) such that translating̀i by~vi,j ·t with t ∈ [a, b)
makes`i and`k intersect. LABELRECTANGLEINTERSEC-
TION includes the connecting line of`k in the computation

A

B

C

r

φmax

φmin

r

ci

xC − xA

Figure 5: Computing the minimum and maximum angles
φmin and φmax for intersectingci with a line. φmin =
− arcsin((xC − xA)/||AC||)− arcsin(r/||AC||).

of [a, b). This algorithmic framework would allow for dif-
ferent label-to-leader line attachments as long as the attach-
ments are fixed a-priori, depending on leader line direction.
Optimizing over leader line attachments would significantly
add to the running time of the algorithm.

After initialization, the algorithm repeatedly chooses a
point pi and one of its raysri,j for labeling. It places the
label at the locationdi,j , the closest free location on rayri,j .
As stated above, this choice should be made to minimize the
impact on the remaining label positions. This criterion re-
quires a measure for the available label space at each point.
The remaining label positions at a pointpi are defined by
the set of intervalsIi,j for each rayri,j . To derive a measure
for available space from these intervals, a strictly decreasing
function f(x) is chosen and the integral

∫
Ii,j

f(x) dx over

Ii,j is calculated for each rayri,j . We chosef(x) = e−ax

because it is easy to integrate in closed form. Sincef(x) is
strictly decreasing, closer label positions are preferred over
label positions farther frompi. Summing up the integrals
over all rays of pointpi gives a measure of the amount of
remaining label positions called

∫
pi.

This measure forms the basis for algorithm FINDBEST-
RAY shown on page 4. The algorithm is given a setP ⊆ P0

and iterates over allpi ∈ P . For each pointpi, it considers
only the set of best raysR, i.e., the rays whose closest free
positiondi,j is minimal (within some bound to account for
rounding errors). For each of these raysri,j ∈ R, the label̀ i

is moved todi,j resulting in label̀ ′i. In the following loop,
`′i’s impact on all other labels̀k of pointspk ∈ P0 \ {pi}
is calculated. For every rayrk,l of every pointpk, k 6= i,
the algorithm computes the intersection intervalJ of label
`k moving along the rayrk,l with label`′i. We then compute
the integral off over Ik,l \ J as a measure of the remain-
ing label space after obstruction by label`′i. This results
in a new total

∫
pk

− for each pointpk which is stored in
the list Vi,j . Thus,Vi,j contains a measure for each point
pk representing the remaining label space after label`i is
placed on rayri,j . Now, FINDBESTRAY chooses the ray
max∀i,j{minv∈Vi,j{v}} which maximizes the minimum re-
maining label space for any label.

We use two observations to significantly reduce the run-
time of our algorithm. Typically, the intersection tests are

performed successively for all rays of a point. Thus, the
computation time of our algorithm is dominated by the cal-
culation of intersection intervals. It is therefore worthwhile
to implement a fast rejection called PREINTERSECT, which
determines for which rays an intersection can occur at all. In
all our intersection tests, a label rectangle`i is translated by
a certain vector~v and intersected against circle, rectangle or
line objects. We can approximate the label rectangle`i by an
enclosing circleci and compute the minimum and maximum
angleφmin andφmax for the vector~v in between which the
approximating circleci intersects the object (Fig. 5). Then,
the exact intersection tests need to be performed only for
raysri,j with φmin ≤ φi,j ≤ φmax.

The second observation is that we can abort the calcula-
tion of Vi,j as soon as we encounter a

∫
pk

− less than the
minimum of the best currently foundVbest. Stopping the
evaluation as early as possible gives a significant speed im-
provement. In order to find a good candidate ray earlier and
thus reject later rays quicker,pi ∈ P are sorted in the begin-
ning according to their initially available space in descend-
ing order. A label̀ i which has a lot of available space is
likely to produce a better solution than any other label be-
cause it cannot obstruct other label positions.

The final RAY INTERSECTIONalgorithm on page 4 is very
short. When a rayrbest = ri,j belonging to a pointpi and
label`i has been found, the label is placed at position~vi,j ·
di,j . Placing a new label limits the available label positions
of all other points. This needs to be reflected in the interval
setsIk,l of every rayrk,l of every pointpk ∈ P0, i 6= k.
The method LABELRECTANGLEINTERSECTIONcomputes
the corresponding intersection interval[a, b) which is then
removed fromIk,l. RAY INTERSECTION is computable in
O(|P0|3 R2) whereR is the constant number of rays. Due
to several optimizations we found its average complexity to
beO(|P0|2 R2).

The IterativeGreedy Algorithm
The number of successfully placed labels can be improved
over the naive application of RAY INTERSECTIONby adapt-
ing the order in which labels are placed. The top-level
ITERATIVEGREEDY algorithm is shown on page 5. RAY-
INTERSECTION is called first onP0. This may result in a
set of unlabeled pointsN , when the limited lookahead was
unable to maintain free label positions for all labels. Often,
these points inN are in dense clusters which are difficult
to label. Therefore, it is a good idea to label the points in
N first. Thus, RAY INTERSECTIONis first called onN and
then on the remaining pointsP0 \N . Generalizing this ap-
proach, letPi be a queue of point sets. Initially, all points
are in P0. Assuming there weren non-empty point sets
P0, . . . , Pn−1, RAY INTERSECTION is subsequently called
on each set, starting withPn−1. If for any point setPi, af-
ter calling RAY INTERSECTION, a non-empty setN of un-
labeled points is returned, the points inN are promoted
to the groupPi+1 which is labeled earlier in the next it-
eration. When a partition into point setsP0, . . . , Pn−1 is
found such that all points can be labeled, the labeling re-
sult can often still be improved by promoting the label with

Algorithm 1 : FindBestRay Algorithm
Input : A set of pointspi ∈ P ⊆ P0 with raysri,j for

each pointpi.
Output : The best rayrbest to be labeled next.

sortpi ∈ P by available space
∫

pi in descending order;1 ∫
pmin ← INT MAX;2

rbest ← nil;3

Vbest ← ∅;4

foreachpi ∈ P do5

R← { ri,j | di,j = min∀k{di,k}+ const};6

foreach ri,j ∈ R do7

Vi,j ← ∅;8

`′i ← `i + ~vi,j · di,j ;9

foreachpk ∈ P0 \ {pi} do10 ∫
pk

− ← 0;11

(φmin, φmax)← PREINTERSECT(`′i, `k);12

foreach ray rk,l of pk with13

φmin ≤ φk,l ≤ φmax do
J ← LABELRECTANGLEINTERSEC-14

TION(`′i, `k, rk,l);∫
pk

− ←
∫

pk
− +

∫
Ik,l \ J

f(x) dx;15

end16

if rbest 6= nil ∧
∫

pk
− <

∫
pmin then17

continue withri,j+1;18

end19

Vi,j .push(
∫

pk
−);20

end21

if Vi,j < Vbest in lexicographic orderthen22

rbest ← ri,j ;23

Vbest ← Vi,j ;24 ∫
pmin ← min{v ∈ Vbest};25

end26

end27

end28

return rbest;29

the longest distance from its point. The algorithm continues
as long as all points remain labeled and the total distance
of all leader lines decreases. If RAY INTERSECTIONreturns
an optimal solution we have¬promoted because all labels
have been placed and subsequently searching the label with
the longest connector will return nothing, i.e., all labels have
been placed adjacent to their point. Therefore, the algorithm
can terminate in line 25.

In its simplest form, ITERATIVEGREEDY as it is shown is
not guaranteed to terminate. If a label exists that cannot even
be placed as the first, the algorithm will loop infinitely. This
label will eventually be in its own label setPi. LabelingPi

will fail and RAY INTERSECTION returns the setN = Pi.
In this case, the algorithm should not promote the setN ,
but instead remove this label and setpromoted to false. The
algorithm will then continue as if all labels have been placed.

Algorithm 2 : RayIntersection Algorithm
Input : A set of pointsP ⊆ P0 with raysri,j for each

pointpi ∈ P .
Output : A set of pointsN ⊆ P which could not be

labeled.

N ← ∅;1

while P 6= ∅ do2

ri,j ← FINDBESTRAY (P);3

Place label̀ i at position~vi,j · di,j ;4

foreachpk ∈ P0 \ {pi} do5

(φmin, φmax)← PREINTERSECT(`i, `k);6

foreach ray rk,l of pk with φmin ≤ φk,l ≤ φmax7

do
[a, b)← LABELRECTANGLEINTERSEC-8

TION(`i, `k, rk,l) ∩ Ik,l;∫
pk ←

∫
pk −

∫
[a,b)

f(x) dx;9

Ik,l ← Ik,l \ [a, b);10

end11

if
∫

pk = 0 then12

N ← N ∪ {pk};13

P ← P \ {pk};14

end15

end16

end17

return N ;18

In another case of infinite running, the algorithm may
cyclicly revisit the same label partitions. As a simple fix,
the repeat ... until loop should be terminated after a constant
number of iterations, returning the best solution found so far.

Evaluation
We chose to compare our algorithm’s quality and perfor-
mance with the results of three algorithms, selected for be-
ing the best performer in the survey they were tested in. In
past papers, labeling algorithms have also been compared to
random placement, Hirschs original heuristic or exponential
optimal algorithms, all of which performed badly. In (Chris-
tensen, Marks, & Shieber 1995) the simulated annealing
algorithm SIM ANN with four possible label positions per-
formed best. For the sliding label model we included both
the approximation algorithm APPROX presented in (Strijk
& van Kreveld 1999) and the more recent force-directed
algorithm FDL described in (Ebner, Klau, & Weiskircher
2003). We used the implementations by Ebner et al. that
are publicly available on the authors’ website1. Besides the
presented FULL ALGORITHM, we also evaluated a simpler
version of our algorithm called NOLOOKAHEAD that does
not use any lookahead. Instead, FINDBESTRAY chooses the
point with the least free space as the next point to label. This
reduces our algorithm’s complexity toO(|P0|2 R). All per-
formance data was measured on an AMD Athlon64 3800+

1http://www.ads.tuwien.ac.at/research/labeling/

Algorithm 3 : IterativeGreedy Algorithm
Input : A set of pointspi ∈ P0 to be labeled.

initialize pi ∈ P0 including rays and labels;1

n← 1;2

breakatlocalopt← false;3

while truedo4

∀i : P ′
i ← Pi;5

i← n− 1;6

promoted← false;7

while i ≥ 0 do8

N ← RAY INTERSECTION(Pi);9

if N 6= ∅ then10

P ′
i ← P ′

i \ N ;11

P ′
i+1 ← P ′

i+1 ∪N ;12

n← n + 1;13

promoted← true;14

end15

i← i− 1;16

end17

if ¬promoted then18

breakatlocalopt← true;19

Find label with longest connectorp ∈ P ′
i ;20

if p existsthen21

P ′
i ← P ′

i \ {p} // promote label;22

P ′
i+1 ← P ′

i ∪ {p};23

else24

∀i P ∗
i ← Pi // labeling is optimal;25

break;26

end27

end28

if first iteration or labelingPi better thanP ∗
i then29

∀i P ∗
i ← Pi;30

else ifbreakatlocalopt then31

break// We had a complete solution already;32

end33

∀i Pi ← P ′
i ;34

end35

place labels at stored solutionP ∗
i ;36

machine equipped with 1 GB RAM.
We compared these five algorithms first on the evenly dis-

tributed evaluation set used by Ebner et al. available on
their website at the address mentioned above. We used the
sets with up to 1300 labels which were generated to be al-
ways solvable. They were indeed relatively easy to label and
both our NOLOOKAHEAD algorithm and the FDL algorithm
maintained very good results even for large numbers of la-
bels as Fig. 6 (a) demonstrates. Our NOLOOKAHEAD algo-
rithm performed better than FDL, APPROX, and SIM ANN
when comparing the labeling quality. However, the trade-
off between time and quality does not seem to favor our
algorithm (Fig. 6 (b)) as it is significantly slower than the

others. Analysis of our algorithm’s performance shows that
it is slowed down by the larger number of points as well as
a larger number of iterations of ITERATIVEGREEDY. The
number of iterations increases very quickly early on, but
later levels off at 18.

As a second test set we chose labeling problems gener-
ated by a Gaussian distribution, i.e., test sets with dense
point clusters of up to 99 labels which more closely resem-
ble real-world labeling problems, e.g. when labeling charts.
Although the examples contained relatively few labels they
proved to be very difficult as Fig. 7 (a) shows. The sets were
small enough so we could also test our FULL ALGORITHM.
Both our scatter chart algorithms attained significantly better
results than the best competitor, the force-directed labeling
algorithm. The chart shows that our algorithms are able to
frequently place all labels, which all others, using their lim-
ited placement options, never achieve. For very large num-
bers of labels, there is simply not enough space to fit all
labels and the number of placed labels converges for all five
algorithms. We chose to depict the computation time on log-
arithmic scale (Fig. 7 (b)) because it shows the similar run-
time of NOLOOKAHEAD and FDL with NOLOOKAHEAD’s
labeling quality being far superior. The APPROXalgorithm
was faster than the Java timer resolution and is therefore not
included.

Under the measure of placed labels, the advantage of us-
ing lookahead seems small, in particular considering its per-
formance overhead. However, we measured the total dis-
tance of all labels to their points and found that the FULL AL-
GORITHM version placed more labels and it placed some at
least 20 % closer to their points than NOLOOKAHEAD (not
shown).

Conclusion
The results show that our scatter chart labeling algorithm
is able to solve more difficult labeling problems with dense
label clusters than previously best competitors. Even for
evenly distributed samples the solution quality is still su-
perior to that of any other algorithm. In addition, our al-
gorithmic framework is flexible enough to allow for easy
adaptation to different label problems. We extended it to so-
called bubble charts in which a point’s third dimension is
shown as its area or diameter. For these charts, labels can
be placed inside and outside of bubbles, with the added dif-
ficulty that bubbles can partially intersect each other. It is
similarly straightforward to incorporate user input by fixing
labels to user-defined locations. These labels simply cre-
ate additional obstructions initially excluded from the free
intervals. Because users expect fast response times when
interacting with a computer, we let the algorithm compute
a labeling solution asynchronously, starting over whenever
the user changes the input. On multi-processor machines,
the algorithm runs in parallel.

The presented algorithm is used in a production environ-
ment encompassing over 15000 users worldwide at 120+
companies. Our users say that the quality of the automatic
labeling quality is often superior to solutions created by hu-
mans due to its greater visual regularity.

!"#""$%&'%(

) *

+,,-".

/0#

123+44

5) *

6)) *

78 *

!"#$%&'(#)%"*

9*:

;%4("3<=.%3,>'<#%?'>24@<AB%>2CD

6)) E)) F)) G)) 5)) 66)) 6E)) (#)%"*'9H:

(a)

!"#

$%#%%&'()'*

+,-.//

.001%2

!"#$

345

6'/*%-782'-09)7#':)9,/;7<,-)

=>> ?>> @>> A>> B>> ==>> =?>>

=>>>

=>>

=>

=

>C=

>C>=

>C>>=

%&'$()*3D5

(b)

Figure 6: Results for labeling randomly distributed points.

Acknowledgments
The authors would like to thank Markus Hannebauer and
Hans-Dieter Burkhard for their valuable input.

References
Christensen, J.; Marks, J.; and Shieber, S. 1995. An empir-
ical study of algorithms for point-feature label placement.
ACM Transactions on Graphics14(3):203 – 232.

do Nascimento, H. A. D., and Eades, P. 2003. User hints for
map labelling. InCRIPTS ’03: Proceedings of the twenty-
sixth Australasian computer science conference on Confer-
ence in research and practice in information technology,
339–347. Australian Computer Society, Inc.

Ebner, D.; Klau, G. W.; and Weiskircher, R. 2003. Force-
based label number maximization. Technical Report TR-
186-1-03-02, TU Wien.

Formann, M., and Wagner, F. 1991. A packing problem
with applications to lettering of maps.Proceedings of the
7th Annual ACM Symposium on Computational Geometry
281–288.

Hirsch, S. 1982. An algorithm for automatic name place-
ment around point data. The American Cartographer
9(1):5–17.

!"#

$%#%%&'()'*

+,-.//

.001%2

34 35 67

877 9

66

7 9

:7 9

6; <4 <; 55 :6 ;4 =4

;7 9

!>??@.?A%1,B(-

=7 9

==

!"#$%&'(#)%"*

C9D

E?>FB)1)*@E('1B@#'G)?,/A@H>'?,BI

(#)%"*'CJD

(a)

!!

"#$##%&'(&)

*+,,-.,/#012'3

*4$

513.66

!"#$

789

:; :: :< => =< ??@> @? A: <> !>

B,+82(0()-B'&02-$&C(,16/-D13(

E;;;

E;;

E

E;

;FE

;F;E

%&'$()*7G9

(b)

Figure 7: Results for labeling dense point clusters.

Imhof, E. 1975. Positioning names on maps.The American
Cartographer2(2):128 – 144.
Iturriaga, C., and Lubiw, A. 1997. Np-hardness of some
map labeling problems. Technical Report CS-97-18, Uni-
versity of Waterloo.
Marks, J., and Shieber, S. 1991. The computational com-
plexity of cartographic label placement. Advanced Re-
search in Computing Technology TR-05-91, Harvard Uni-
versity.
Müller, S., and Scḧodl, A. 2005. A smart algorithm for col-
umn chart labeling. In Butz, A.; Fisher, B.; Krüger, A.; and
Olivier, P., eds.,Smart Graphics: 5th International Sympo-
sium, SG 2005, Frauenẅorth Cloister, Germany, volume
3638 of Lecture Notes in Computer Science, 127 – 137.
Springer Verlag.
Strijk, T., and van Kreveld, M. 1999. Practical extensions
of point labeling in the slider model. InGIS ’99: Proceed-
ings of the 7th ACM international symposium on Advances
in geographic information systems, 47–52. New York, NY,
USA: ACM Press.
van Kreveld, M.; Strijk, T.; and Wolff, A. 1999. Point la-
beling with sliding labels.Computational Geometry: The-
ory and Applications13:21–47.

