
1 / 110

Ranges in C++20

How often do we have to mention vec?

std::vector<T> vec=...;
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());

1 / 110

Ranges in C++20

How often do we have to mention vec?

Pairs of iterators belong together -> use one object!

std::vector<T> vec=...;
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());

std::sort(vec);
vec.erase(std::unique(vec),vec.end());

2 / 110

Ranges in C++20

How often do we have to mention vec?

Pairs of iterators belong together -> use one object!

If you have no C++20 compiler: https://github.com/ericniebler/range-v3

std::vector<T> vec=...;
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());

std::sort(vec);
vec.erase(std::unique(vec),vec.end());

3 / 110

https://github.com/ericniebler/range-v3

Why do I think I know something about
ranges?

think-cell has a range library

evolved from Boost.Range

1 million lines of production code use it

Library and production code evolve together

ready to change library and production code anytime

no obstacle to library design changes

large code base to try them out

4 / 110

Why do I think I know something about
ranges?

think-cell has a range library

evolved from Boost.Range

1 million lines of production code use it

Library and production code evolve together

ready to change library and production code anytime

no obstacle to library design changes

large code base to try them out

std::sort(vec);
vec.erase(std::unique(vec),vec.end());

5 / 110

Why do I think I know something about
ranges?

think-cell has a range library

evolved from Boost.Range

1 million lines of production code use it

Library and production code evolve together

ready to change library and production code anytime

no obstacle to library design changes

large code base to try them out

std::sort(vec);
vec.erase(std::unique(vec),vec.end());

Better:

tc::sort_unique_inplace(vec);

6 / 110

Why do I think I know something about
ranges?

think-cell has a range library

evolved from Boost.Range

1 million lines of production code use it

Library and production code evolve together

ready to change library and production code anytime

no obstacle to library design changes

large code base to try them out

std::sort(vec);
vec.erase(std::unique(vec),vec.end());

Better:

tc::sort_unique_inplace(vec);

tc::sort_unique_inplace(vec, less);

7 / 110

What are Ranges?

Containers

vector
string
list

own elements

deep copying

copying copies elements in O(N)

deep constness

const objects implies const elements

8 / 110

What are Ranges?

Containers

vector
string
list

own elements

deep copying

copying copies elements in O(N)

deep constness

const objects implies const elements

Views

 Range
 /\
 / \
 / \
 Container View

9 / 110

Views

template<typename It>
struct subrange {
 It m_itBegin;
 It m_itEnd;
 It begin() const {
 return m_itBegin;
 }
 It end() const {
 return m_itEnd;
 }
};

reference elements

shallow copying

copying copies reference in O(1)

shallow constness

view object const independent of element const

10 / 110

More Interesting Views: Range Adaptors

vs.

std::vector<int> v{1,2,4};
auto it=ranges::find(
 v,
 4
); // first element of value 4.

struct A {
 int id;
 double data;
};
std::vector<int> v{1,2,4};
auto it=ranges::find_if(
 v,
 [](A const& a){ return a.id==4; } // first element of value 4 in id
);

Similar in semantics

Not at all similar in syntax

11 / 110

Transform Adaptor

vs.

std::vector<int> v{1,2,4};
auto it=ranges::find(
 v,
 4
); // first element of value 4.

struct A {
 int id;
 double data;
};
std::vector<int> v{1,2,4};
auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
); // first element of value 4 in id

12 / 110

Transform Adaptor (2)

What is it pointing to?

struct A {
 int id;
 double data;
};
std::vector<int> v{1,2,4};
auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
); // first element of value 4 in id

13 / 110

Transform Adaptor (2)

What is it pointing to?

struct A {
 int id;
 double data;
};
std::vector<int> v{1,2,4};
auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
); // first element of value 4 in id

int!

14 / 110

Transform Adaptor (2)

What is it pointing to?

What if I want it to point to A?

struct A {
 int id;
 double data;
};
std::vector<int> v{1,2,4};
auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
); // first element of value 4 in id

int!

15 / 110

Transform Adaptor (2)

What is it pointing to?

What if I want it to point to A?

struct A {
 int id;
 double data;
};
std::vector<int> v{1,2,4};
auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
); // first element of value 4 in id

int!

auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
).base();

16 / 110

Transform Adaptor Implementation

template<typename Base, typename Func>
struct transform_view {
 struct iterator {
 private:
 Func m_func; // in every iterator, hmmm...
 decltype(ranges::begin(std::declval<Base&>())) m_it;
 public:
 decltype(auto) operator*() const {
 return m_func(*m_it);
 }
 decltype(auto) base() const {
 return (m_it);
 }
 ...
 };
};

17 / 110

Filter Adaptor

Range of all a with a.id==4?

auto rng = v | views::filter([](A const& a){ return 4==a.id; });

Lazy! Filter executed while iterating

18 / 110

Filter Adaptor Implementation

template<typename Base, typename Func>
struct filter_view {
 struct iterator {
 private:
 Func m_func; // functor and TWO iterators!
 decltype(ranges::begin(std::declval<Base&>())) m_it;
 decltype(ranges::begin(std::declval<Base&>())) m_itEnd;
 public:
 iterator& operator++() {
 ++m_it;
 while(m_it!=m_itEnd
 && !static_cast<bool>(m_func(*m_it))) ++m_it;
 // why static_cast<bool> ?
 return *this;
 }
 ...
 };
};

19 / 110

How would iterator look like of

views::filter(m_func3)(views::filter(m_func2)(views::filter(m_func1, ...))) ?

20 / 110

Boost.Range did this! ARGH!

m_func3
m_it3
 m_func2
 m_it2
 m_func1
 m_it1;
 m_itEnd1;
 m_itEnd2
 m_func1
 m_itEnd1;
 m_itEnd1;
m_itEnd3
 m_func2
 m_it2
 m_func1
 m_itEnd1;
 m_itEnd1;
 m_itEnd2
 m_func1
 m_itEnd1;
 m_itEnd1;

21 / 110

More Efficient Range Adaptors

Must keep iterators small

Idea: adaptor object carries everything that is common for all iterators

Iterators carry reference to adaptor object (for common stuff) and base iterator

 m_func
 m_itEnd

 *m_rng
 m_it

22 / 110

More Efficient Range Adaptors

Must keep iterators small

Idea: adaptor object carries everything that is common for all iterators

Iterators carry reference to adaptor object (for common stuff) and base iterator

 m_func
 m_itEnd

 *m_rng
 m_it

C++20 State of the Art

C++20 iterators cannot outlive their range

unless it is a std::ranges::borrowed_range

23 / 110

More Efficient Range Adaptors: Iterator
Safety

auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
).base(); // DOES NOT COMPILE

24 / 110

More Efficient Range Adaptors: Iterator
Safety

auto it=ranges::find(
 v | views::transform(std::mem_fn(&A::id)),
 4
).base(); // DOES NOT COMPILE

Iterator from rvalue

Danger of dangling reference!

25 / 110

More Efficient Range Adaptors: Iterator
Safety

auto it=ranges::find(
 tc::as_lvalue(v | views::transform(std::mem_fn(&A::id))),
 4
).base(); // COMPILES

No actual dangling reference because of .base()

Silence error

26 / 110

Again: How does iterator look like of

views::filter(m_func3)(views::filter(m_func2)(views::filter(m_func1, ...))) ?

m_rng3
m_it3
 m_rng2
 m_it2
 m_rng1
 m_it1

Still not insanely great...

27 / 110

Beyond C++20 Ranges:

Index Concept
Index

Like iterator

But all operations require its range object

template<typename Base, typename Func>
struct index_range {
 ...
 using Index=...;
 Index begin_index() const;
 Index end_index() const;
 void increment_index(Index& idx) const;
 void decrement_index(Index& idx) const;
 reference dereference(Index const& idx) const;
 ...
};

28 / 110

Index-Iterator Compatibility

Index from Iterator

using Index = Iterator

Index operations = Iterator operations

Iterator from Index

template<typename IndexRng>
struct iterator_for_index {
 IndexRng* m_rng
 typename IndexRng::Index m_idx;

 iterator& operator++() {
 m_rng.increment_index(m_idx);
 return *this;
 }
 ...
};

29 / 110

Super-Efficient Range Adaptors With Indices

Index-based filter_view

template<typename Base, typename Func>
struct filter_view {
 Func m_func;
 Base& m_base;

 using Index=typename Base::Index;
 void increment_index(Index& idx) const {
 do {
 m_base.increment_index(idx);
 } while(idx!=m_base.end_index()
 && !static_cast<bool>(m_func(m_base.dereference_index(idx)))
);
 }
};

30 / 110

Super-Efficient Range Adaptors With Indices

Index-based filter_view

template<typename Base, typename Func>
struct filter_view {
 Func m_func;
 Base& m_base;

 using Index=typename Base::Index;
...

template<typename IndexRng>
struct iterator_for_index {
 IndexRng* m_rng
 typename IndexRng::Index m_idx;
 ...

All iterators are two pointers

irrespective of stacking depth

31 / 110

C++20 Ranges and rvalue containers

If adaptor input is lvalue container

views::filter creates view

view is reference, O(1) copy, shallow constness etc.

auto v = create_vector();
auto rng = v | views::filter(pred1);

32 / 110

C++20 Ranges and rvalue containers

If adaptor input is rvalue container

views::filter cannot create view

view would hold dangling reference to rvalue

auto rng = create_vector() | views::filter(pred1); // DOES NOT COMPILE

33 / 110

C++20 Ranges and rvalue containers

If adaptor input is rvalue container

views::filter cannot create view

view would hold dangling reference to rvalue

auto rng = create_vector() | views::filter(pred1); // DOES NOT COMPILE

Return lazily filtered container?

auto foo() {
 auto vec=create_vector();
 return std::make_tuple(vec, views::filter(pred)(vec));
}

34 / 110

C++20 Ranges and rvalue containers

If adaptor input is rvalue container

ARGH!

views::filter cannot create view

view would hold dangling reference to rvalue

auto rng = create_vector() | views::filter(pred1); // DOES NOT COMPILE

Return lazily filtered container?

auto foo() {
 auto vec=create_vector();
 return std::make_tuple(vec, views::filter(pred)(vec)); // DANGLING REFERENCE!
}

35 / 110

think-cell and rvalue containers

If adaptor input is lvalue container

If adaptor input is rvalue container

Always lazy

tc::filter creates view

view is reference, O(1) copy, shallow constness etc.

tc::filter creates container

aggregates rvalue container, deep copy, deep constness etc.

Laziness and container-ness are orthogonal concepts

auto vec=create_vector();
auto rng=tc::filter(vec,pred1);

auto foo() {
 return tc::filter(creates_vector(),pred1);
}

36 / 110

Beyond C++20 Ranges:

More Flexible Algorithm Returns

template< typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
 auto const itEnd=ranges::end(rng);
 for(auto it=ranges::begin(rng); it!=itEnd; ++it)
 if(*it==what)
 return it;
 return itEnd;
}

37 / 110

More Flexible Algorithm Returns (2)

template< typename Pack, typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
 auto const itEnd=ranges::end(rng);
 for(auto it=ranges::begin(rng); it!=itEnd; ++it)
 if(*it==what)
 return Pack::pack(it,rng);
 return Pack::pack_singleton(rng);
}

struct return_element_or_end {
 static auto pack(auto it, auto&& rng) {
 return it;
 }
 static auto pack_singleton(auto&& rng) {
 return ranges::end(rng);
 }
}

auto it=find<return_element_or_end>(...)

38 / 110

More Flexible Algorithm Returns (3)

template< typename Pack, typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
 auto const itEnd=ranges::end(rng);
 for(auto it=ranges::begin(rng); it!=itEnd; ++it)
 if(*it==what)
 return Pack::pack(it,rng);
 return Pack::pack_singleton(rng);
}

struct return_element {
 static auto pack(auto it, auto&& rng) {
 return it;
 }
 static auto pack_singleton(auto && rng) {
 std::assert(false);
 return ranges::end(rng);
 }
}

auto it=find<return_element>(...)

39 / 110

More Flexible Algorithm Returns (3)

template< typename Pack, typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
 auto const itEnd=ranges::end(rng);
 for(auto it=ranges::begin(rng); it!=itEnd; ++it)
 if(*it==what)
 return Pack::pack(it,rng);
 return Pack::pack_singleton(rng);
}

struct return_element_or_null {
 static auto pack(auto it, auto&& rng) {
 return tc::element_t<decltype(it)>(it);
 }
 static auto pack_singleton(auto&& rng) {
 return tc::element_t<decltype(ranges::end(rng))>();
 }
}

if(auto it=find<return_element_or_null>(...)) { ... }

40 / 110

Generator Ranges

template<typename Sink>
void traverse_widgets(Sink sink) {
 if(window1) {
 window1->traverse_widgets(std::ref(sink));
 }
 sink(button1);
 sink(listbox1);
 if(window2) {
 window2->traverse_widgets(std::ref(sink));
 }
}

like range of widgets

but no iterators

41 / 110

Generator Ranges

template<typename Sink>
void traverse_widgets(Sink sink) {
 if(window1) {
 window1->traverse_widgets(std::ref(sink));
 }
 sink(button1);
 sink(listbox1);
 if(window2) {
 window2->traverse_widgets(std::ref(sink));
 }
}

mouse_hit_any_widget=tc::any_of(
 [](auto sink){ traverse_widgets(sink); },
 [](auto const& widget) {
 return widget.mouse_hit();
 }
);

42 / 110

External Iteration

Consumer calls producer to get new element

example: C++ iterators

^
| Stack Producer Producer
| / \ / \
 Consumer Consumer Consumer

Consumer is at bottom of stack

Producer is at top of stack

43 / 110

External iteration (2)

Consumer is at bottom of stack

Producer is at top of stack

contiguous code path for whole range

easier to write

better performance

state encoded in instruction pointer

no limit for stack memory

contiguous code path for each item

harder to write

worse performance

single entry point, must restore state

fixed amount of memory or go to heap

44 / 110

Internal Iteration

Producer is at bottom of stack

Consumer is at top of stack

Producer calls consumer to offer new element

example: for_each_xxx, "visitor"

^
| Stack Consumer Consumer
| / \ / \
 Producer Producer Producer

... all the advantages of being bottom of stack ...

... all the disadvantages of being top of stack ...

45 / 110

Coroutines

Can both consumer and producer be bottom-of-stack?

Yes, with coroutines

// does not compile, conceptual
generator<widget&> traverse_widgets() {
 if(window1) {
 window1->traverse_widgets();
 }
 co_yield button1;
 co_yield listbox1;
 if(window2) {
 window2->traverse_widgets();
 }
}

46 / 110

Coroutines (2)

Stackful

use two stacks and switch between them

very expensive

implemented as OS fibers

1 MB of virtual memory per coroutine

Stackless (C++20)

whole callstack must be coroutine-d

// does not compile, conceptual
generator<widget&> traverse_widgets() {
 if(window1) {
 co_yield window1->traverse_widgets();
 }
 co_yield button1;
 co_yield listbox1;
 if(window2) {
 co_yield window2->traverse_widgets();
 }
}

47 / 110

Coroutines (2)

Stackful

use two stacks and switch between them

very expensive

implemented as OS fibers

1 MB of virtual memory per coroutine

Stackless (C++20)

whole callstack must be coroutine-d

// does not compile, conceptual
generator<widget&> traverse_widgets() {
 ranges::for_each(windows1, [](auto const& window1) {
 co_yield window1->traverse_widgets(); // DOES NOT COMPILE
 });
 co_yield button1;
 co_yield listbox1;
 ranges::for_each(windows2, [](auto const& window2) {
 co_yield window2->traverse_widgets(); // DOES NOT COMPILE
 });
}

48 / 110

Coroutines (2)

Stackful

use two stacks and switch between them

very expensive

implemented as OS fibers

1 MB of virtual memory per coroutine

Stackless (C++20)

can only yield in top-most function

still a bit expensive

dynamic jump to resume point

save/restore some registers

no aggressive inlining

49 / 110

Internal Iteration often good enough

Algorithm Internal Iteration?

find no (single pass iterators)

binary_search no (random access iterators)

50 / 110

Internal Iteration often good enough

Algorithm Internal Iteration?

find no (single pass iterators)

binary_search no (random access iterators)

for_each yes

accumulate yes

all_of yes

any_of yes

none_of yes

51 / 110

Internal Iteration often good enough

Algorithm Internal Iteration?

find no (single pass iterators)

binary_search no (random access iterators)

for_each yes

accumulate yes

all_of yes

any_of yes

none_of yes

Adaptor Internal Iteration?

tc::filter yes

tc::transform yes

So allow ranges that support only internal iteration!

52 / 110

any_of implementation

namespace tc {
 template< typename Rng >
 bool any_of(Rng const& rng) {
 bool bResult=false;
 tc::for_each(rng, [&](bool_context b){
 bResult=bResult || b;
 });
 return bResult;
 }
}

tc::for_each is common interface for iterator, index and generator ranges

Ok?

53 / 110

any_of implementation

namespace tc {
 template< typename Rng >
 bool any_of(Rng const& rng) {
 bool bResult=false;
 tc::for_each(rng, [&](bool_context b){
 bResult=bResult || b;
 });
 return bResult;
 }
}

tc::for_each is common interface for iterator, index and generator ranges

Ok?

ranges::any_of stops when true is encountered!

54 / 110

Interruptable Generator Ranges

First idea: exception!

55 / 110

Interruptable Generator Ranges

First idea: exception!

too slow:-(

56 / 110

Interruptable Generator Ranges

First idea: exception!

Second idea:

too slow:-(

enum break_or_continue {
 break_,
 continue_
};

template< typename Rng >
bool any_of(Rng const& rng) {
 bool bResult=false;
 tc::for_each(rng, [&](bool_context b){
 bResult=bResult || b;
 return bResult ? break_ : continue_;
 });
 return bResult;
}

57 / 110

Interruptable Generator Ranges (2)

Generator Range can elide break_ check

If functor returns break_or_continue,
break if break_ is returned.

If functor returns anything else,

nothing to check, always continue

58 / 110

concat

std::list<int> lst;
std::vector<int> vec;

tc::for_each(tc::concat(lst,vec), [](int i) {
 ...
});

59 / 110

concat implementation with indices

template<typename Rng1, typename Rng2>
struct concat_range {
private:
 using Index1=typename range_index<Rng1>::type;
 using Index2=typename range_index<Rng2>::type;

 Rng1& m_rng1;
 Rng2& m_rng2;
 using index=std::variant<Index1, Index2>;
public:
...

60 / 110

concat implementation with indices (2)

...
 void increment_index(index& idx) {
 std::visit(tc::make_overload(
 [&](Index1& idx1){
 m_rng1.increment_index(idx1);
 if (m_rng1.at_end_index(idx1)) {
 idx=m_rng2.begin_index();
 }
 },
 [&](Index2& idx2){
 m_rng2.increment_index(idx2);
 }
), idx);
 }
...

Branch for each increment!

61 / 110

concat implementation with indices (3)

...
 auto dereference_index(index const& idx) const {
 std::visit(tc::make_overload(
 [&](Index1 const& idx1){
 return m_rng1.dereference(idx1);
 },
 [&](Index2 const& idx2){
 return m_rng2.dereference(idx2);
 }
), idx);
 }
 ...
};

Branch for each dereference!

How avoid all these branches?

62 / 110

concat implementation with indices (3)

...
 auto dereference_index(index const& idx) const {
 std::visit(tc::make_overload(
 [&](Index1 const& idx1){
 return m_rng1.dereference(idx1);
 },
 [&](Index2 const& idx2){
 return m_rng2.dereference(idx2);
 }
), idx);
 }
 ...
};

Branch for each dereference!

How avoid all these branches?

With Generator Ranges!

63 / 110

concat implementation as generator range

template<typename Rng1, typename Rng2>
struct concat_range {
private:
 Rng1 m_rng1;
 Rng2 m_rng2;

public:

 ...

 // version for non-breaking func
 template<typename Func>
 void operator()(Func func) {
 tc::for_each(m_rng1, func);
 tc::for_each(m_rng2, func);
 }
};

Even iterator-based ranges sometimes perform better with generator interface!

64 / 110

Ranges instead of std::format?

C++20 std::format formatters write to output iterators

internal iteration!

65 / 110

Ranges instead of std::format?

C++20 std::format formatters write to output iterators

internal iteration!

Can rewrite formatters as generator ranges:

double f=3.14;
tc::concat("You won ", tc::as_dec(f,2), " dollars.")

single unifying concept instead of separate std::format

66 / 110

Ranges instead of std::format?

C++20 std::format formatters write to output iterators

internal iteration!

Can rewrite formatters as generator ranges:

double f=3.14;
tc::concat("You won ", tc::as_dec(f,2), " dollars.")

single unifying concept instead of separate std::format

not like <iostream>: double itself is not a character range:

tc::concat("You won ", f, " dollars.") // DOES NOT COMPILE

67 / 110

Ranges instead of std::format (2)

Extensible by functions returning ranges

auto dollars(double f) {
 return tc::concat("$", tc::as_dec(f,2));
}

double f=3.14;
tc::concat("You won ", dollars(f), ".");

68 / 110

Format Strings

tc::concat(
 "<body>", html_escape(
 tc::placeholders("You won {0} dollars.", tc::as_dec(f,2))
), "</body>"
)

69 / 110

Format Strings

tc::concat(
 "<body>", html_escape(
 tc::placeholders("You won {0} dollars.", tc::as_dec(f,2))
), "</body>"
)

support for names

tc::concat(
 "<body>", html_escape(
 tc::placeholders("You won {amount} dollars on {date}."
 , tc::named_arg("amount", tc::as_dec(f,2))
 , tc::named_arg("date", tc::as_ISO8601(
 std::chrono::system_clock::now()
))
)
), "</body>"
)

Formatting parameters (#decimal digits etc.) not part of format string

Internationalization: translator can rearrange placeholders, but not change parameters

70 / 110

Formatting Into Containers (1)

std::string gives us

Empty Construction

std::string s; // compiles

Construction from literal, another string

std::string s1("Hello"); // compiles
std::string s2(s1); // compiles

71 / 110

Formatting Into Containers (1)

std::string gives us

Empty Construction

std::string s; // compiles

Construction from literal, another string

std::string s1("Hello"); // compiles
std::string s2(s1); // compiles

Add construction from 1 Range

std::string s3(tc::as_dec(3.14,2)); // suggested
std::string s4(tc::concat("You won ", tc::as_dec(3.14,2), " dollars.")); // suggested

72 / 110

Formatting Into Containers (1)

std::string gives us

Empty Construction

std::string s; // compiles

Construction from literal, another string

std::string s1("Hello"); // compiles
std::string s2(s1); // compiles

Add construction from 1 Range

std::string s3(tc::as_dec(3.14,2)); // suggested
std::string s4(tc::concat("You won ", tc::as_dec(3.14,2), " dollars.")); // suggested

Add construction from N Ranges

std::string s5("Hello", " World"); // suggested
std::string s6("You won ", tc::as_dec(3.14,2), " dollars."); // suggested

73 / 110

Formatting Into Containers (2)

What about existing constructors?

std::string s1("A", 3);
std::string s2('A', 3);
std::string s3(3 , 'A');

74 / 110

Formatting Into Containers (2)

What about existing constructors?

std::string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3);
std::string s3(3 , 'A');

75 / 110

Formatting Into Containers (2)

What about existing constructors?

std::string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3); // Adds 65x Ctrl-C
std::string s3(3 , 'A');

76 / 110

Formatting Into Containers (2)

What about existing constructors?

std::string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3); // Adds 65x Ctrl-C
std::string s3(3 , 'A'); // Adds 3x 'A'

77 / 110

Formatting Into Containers (2)

What about existing constructors?

std::string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3); // Adds 65x Ctrl-C
std::string s3(3 , 'A'); // Adds 3x 'A'

Deprecate them!

std::string s(tc::repeat_n('A', 3)); // suggested, repeat_n as in Range-v3

78 / 110

Formatting Into Containers (3)

think-cell library uses tc::explicit_cast to simulate adding/removing explicit constructors:

auto s4=tc::explicit_cast<std::string>("Hello", " World");
auto s5=tc::explicit_cast<std::string>("You won ", tc::as_dec(f,2), " dollars.");

79 / 110

Formatting Into Containers (3)

think-cell library uses tc::explicit_cast to simulate adding/removing explicit constructors:

auto s4=tc::explicit_cast<std::string>("Hello", " World");
auto s5=tc::explicit_cast<std::string>("You won ", tc::as_dec(f,2), " dollars.");

tc::cont_emplace_back wraps .emplace_back/.push_back, uses tc::explicit_cast as needed:

std::vector<std::string> vec;
tc::cont_emplace_back(vec, tc::as_dec(3.14,2));

80 / 110

Formatting Into Containers (3)

think-cell library uses tc::explicit_cast to simulate adding/removing explicit constructors:

auto s4=tc::explicit_cast<std::string>("Hello", " World");
auto s5=tc::explicit_cast<std::string>("You won ", tc::as_dec(f,2), " dollars.");

tc::cont_emplace_back wraps .emplace_back/.push_back, uses tc::explicit_cast as needed:

std::vector<std::string> vec;
tc::cont_emplace_back(vec, tc::as_dec(3.14,2));

Can tc::append:

std::string s;
tc::append(s, tc::concat("You won ", tc::as_dec(f,2), " dollars."));
tc::append(s, "You won ", tc::as_dec(f,2), " dollars.");

81 / 110

Fast Formatting Into Containers

determine string length

allocate memory for whole string at once

fill in characters

82 / 110

Fast Formatting Into Containers

determine string length

allocate memory for whole string at once

fill in characters

template<typename Cont, typename Rng>
auto explicit_cast(Rng const& rng) {
 return Cont(ranges::begin(rng),ranges::end(rng));
}
// note: there are more explicit_cast implementations for types other than containers

83 / 110

Fast Formatting Into Containers

determine string length

allocate memory for whole string at once

fill in characters

template<typename Cont, typename Rng>
auto explicit_cast(Rng const& rng) {
 return Cont(ranges::begin(rng),ranges::end(rng));
}
// note: there are more explicit_cast implementations for types other than containers

for non-random-access ranges, string ctor runs twice over rng :-(

first determine size

then copy characters

84 / 110

Fast Formatting Into Containers

avoid traversing rng twice

rng implements size() member

explicit loop to take advantage of std::size

template<typename Cont, typename Rng, std::enable_if<
 Rng has size and is not random-access
> >
auto explicit_cast(Rng const& rng) {
 Cont cont;
 cont.reserve(std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
 return cont;
}

85 / 110

Fast Formatting Into Containers

also have tc::append

template<typename Cont, typename Rng, std::enable_if<
 Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
 cont.reserve(cont.size() + std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
}

86 / 110

Fast Formatting Into Containers

also have tc::append

template<typename Cont, typename Rng, std::enable_if<
 Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
 cont.reserve(cont.size() + std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
}

all good?

87 / 110

Fast Formatting Into Containers

also have tc::append

template<typename Cont, typename Rng, std::enable_if<
 Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
 cont.reserve(cont.size() + std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
}

.reserve is evil!!!

88 / 110

Better reserve

when adding N elements, guarantee O(N) moves and O(log(N)) memory allocations!

template< typename Cont >
void cont_reserve(Cont& cont, typename Cont::size_type n) {
 if(cont.capacity()<n) {
 cont.reserve(max(n,cont.capacity()*8/5));
 }
}

template<typename Cont, typename Rng, enable_if<
 Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
 tc::cont_reserve(cont.size() + std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
}

89 / 110

Fast Formatting Into Containers

template<typename Cont, typename Rng, enable_if<
 Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
 tc::cont_reserve(cont.size() + std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
}

90 / 110

Fast Formatting Into Containers

template<typename Cont, typename Rng, enable_if<
 Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
 tc::cont_reserve(cont.size() + std::size(rng));
 for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
 tc::cont_emplace_back(cont, *it);
 }
}

What about generator ranges?

91 / 110

Appender Customization Point

introduce appender sink for explicit_cast and append to use

template<typename Cont, typename Rng>
void append(Cont& cont, Rng&& rng) {
 tc::for_each(std::forward<Rng>(rng), tc::appender(cont));
}

92 / 110

Appender Customization Point

introduce appender sink for explicit_cast and append to use

template<typename Cont, typename Rng>
void append(Cont& cont, Rng&& rng) {
 tc::for_each(std::forward<Rng>(rng), tc::appender(cont));
}

appender customization point

returned by container::appender() member function

default for std:: containers

template<typename Cont>
struct appender {
 Cont& m_cont;
 template<typename T> void operator()(T&& t) {
 tc::cont_emplace_back(m_cont, std::forward<T>(t));
 }
};

93 / 110

Appender Customization Point

introduce appender sink for explicit_cast and append to use

template<typename Cont, typename Rng>
void append(Cont& cont, Rng&& rng) {
 tc::for_each(std::forward<Rng>(rng), tc::appender(cont));
}

appender customization point

returned by container::appender() member function

default for std:: containers

template<typename Cont>
struct appender {
 Cont& m_cont;
 template<typename T> void operator()(T&& t) {
 tc::cont_emplace_back(m_cont, std::forward<T>(t));
 }
};

Isn't this just std::back_inserter?

94 / 110

Chunk Customization Point

What about reserve?
Sink needs whole range to call std::size before iteration

95 / 110

Chunk Customization Point

What about reserve?
Sink needs whole range to call std::size before iteration

new Sink customization point chunk
if available, tc::for_each calls it with whole range

template<typename Cont, enable_if<Cont has reserve()> >
struct reserving_appender : appender<Cont> {
 template<typename Rng, enable_if<Rng has size()> >
 void chunk(Rng&& rng) const {
 tc::cont_reserve(m_cont, m_cont.size()+std::size(rng));
 tc::for_each(std::forward<Rng>(rng),
 static_cast<appender<Cont> const&>(*this)
);
 }
};

96 / 110

Chunk Customization Point: other uses

file sink advertises interest in contiguous memory chunks

struct file_appender {
 void chunk(std::span<unsigned char const> rng) const {
 std::fwrite(rng.begin(),1,rng.size(),m_file);
 }
 void operator()(unsigned char ch) const {
 chunk(tc::single(ch));
 }
};

97 / 110

Performance: Appender vs Hand-Written

How much loss compared to hand-written code?

trivial formatting task 10x 'A' + 10x 'B' + 10x 'C' best to expose overhead

struct Buffer {
 char achBuffer[1024];
 char* pchEnd=&achBuffer[0];
} buffer;

void repeat_handwritten(char chA, int cchA,
 char chB, int cchB,
 char chC, int cchC
) {
 for (auto i = cchA; 0 < i; --i) {
 *buffer.pchEnd=chA;
 ++buffer.pchEnd;
 }
 ... cchB ... chB ...
 ... cchC ... chC ...
}

98 / 110

Performance: Appender vs Hand-Written

struct Buffer {
 ...
 auto appender() & {
 struct appender_t {
 Buffer* m_buffer;
 void operator()(char ch) noexcept {
 *m_buffer->pchEnd=ch;
 ++m_buffer->pchEnd;
 }
 };
 return appender_t{this};
 }
} buffer;
void repeat_with_ranges(char chA, int cchA,
 char chB, int cchB,
 char chC, int cchC) {
 tc::append(buffer, tc::repeat_n(chA,cchA), tc::repeat_n(chB,cchB),
 tc::repeat_n(chC,cchC));
}

99 / 110

Performance: Appender vs Hand-Written

repeat_n iterator-based

~50% more time than hand-written (Visual C++ 15.8)

repeat_n supports internal iteration

~15% more time than hand-written (Visual C++ 15.8)

Test is worst case: actual work is trivial

smaller difference for, e.g., converting numbers to strings

100 / 110

Performance: Custom vs Standard Appender

toy basic_string implementation

only heap: pointers begin, end, end_of_memory

Again trivial formatting task: 10x 'A' + 10x 'B' + 10x 'C'

void repeat_with_ranges(
 char chA, int cchA,
 char chB, int cchB,
 char chC, int cchC
) {
 tc::append(mystring,
 tc::repeat_n(chA,cchA), tc::repeat_n(chB,cchB),
 tc::repeat_n(chC,cchC));
}

101 / 110

Performance: Custom vs Standard Appender

Standard Appender

template<typename Cont>
struct appender {
 Cont& m_cont;
 template<typename T>
 void operator()(T&& t) {
 m_cont.emplace_back(std::forward<T>(t));
 }
};
template<typename Cont, enable_if<Cont has reserve()> >
struct reserving_appender : appender<Cont> {
 template<typename Rng, enable_if<Rng has size()> >
 void chunk(Rng&& rng) const {
 tc::cont_reserve(m_cont, m_cont.size()+std::size(rng));
 tc::for_each(std::forward<Rng>(rng),
 static_cast<appender<Cont> const&>(*this)
);
 }
};

102 / 110

Performance: Custom vs Standard Appender

Custom Appender

template<typename Cont>
struct mystring_appender : appender<Cont> {
 Cont& m_cont;
 template<typename T>
 void operator()(T&& t) {
 m_cont.emplace_back(std::forward<T>(t));
 }
 template<typename Rng, enable_if<Rng has size()> >
 void chunk(Rng&& rng) const {
 tc::cont_reserve(m_cont, m_cont.size()+std::size(rng));
 tc::for_each(std::forward<Rng>(rng),
 [&](auto&& t) {
 *m_cont.m_ptEnd=std::forward<decltype(t)>(t);
 ++m_cont.m_ptEnd;
 }
);
 }
};

103 / 110

Performance: Custom vs. Standard Appender

String was only 30 characters

Heap allocation

Custom Appender ~20% less time (Visual C++ 15.8)

Requires own basic_string implementation

uninitialized buffer not exposed by std::basic_string/std::vector

104 / 110

Performance: Future Work

if not all snippets implement size(): new customization point min_size()?
concat::min_size() is sum of min_size() of components

min_size() never wrong to return 0

custom file appender that fills fixed I/O buffer

replace std::FILE buffer with own buffer

offer unchecked write as long as snippet size() still fits

new customization point max_size?

105 / 110

Conclusion

Ranges are very useful

Index-based ranges and generators improve performance over C++20 iterator-based ranges

Unify ranges with text formatting

106 / 110

Now that we have all this range stuff

URL of our range library: https://github.com/think-cell/think-cell-library

107 / 110

https://github.com/think-cell/think-cell-library

Now that we have all this range stuff

I hate the range-based for loop!

URL of our range library: https://github.com/think-cell/think-cell-library

108 / 110

https://github.com/think-cell/think-cell-library

Now that we have all this range stuff

I hate the range-based for loop!

because it encourages people to write this

URL of our range library: https://github.com/think-cell/think-cell-library

bool b=false;
for(int n : rng) {
 if(is_prime(n)) {
 b=true;
 break;
 }
}

109 / 110

https://github.com/think-cell/think-cell-library

Now that we have all this range stuff

I hate the range-based for loop!

because it encourages people to write this

instead of this

THANK YOU!

URL of our range library: https://github.com/think-cell/think-cell-library

bool b=false;
for(int n : rng) {
 if(is_prime(n)) {
 b=true;
 break;
 }
}

bool b=ranges::any_of(rng, is_prime);

110 / 110

https://github.com/think-cell/think-cell-library

