Better C++ Ranges
Arno Schaodl

Ranges in C++20 think-cell*

std: :vector<T> vec=...;
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());

How often do we have to mention vec?

1/ 10

Ranges in C++20 think-cell*

std: :vector<T> vec=...;
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());

How often do we have to mention vec?

Pairs of iterators belong together - use one object!

std: :sort(vec);
vec.erase(std: :unique(vec),vec.end());

2/M10

Ranges in C++20 think-cell*

std: :vector<T> vec=...;
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());

How often do we have to mention vec?

Pairs of iterators belong together - use one object!

std: :sort(vec);
vec.erase(std: :unique(vec),vec.end());

If you have no C++20 compiler: https://github.com/ericniebler/range-v3

3/10

https://github.com/ericniebler/range-v3

Why do | think | know something about think-cell™=

ranges?

m think-cell has a range library
o evolved from Boost.Range

m T million lines of production code use it

m [jbrary and production code evolve together
o ready to change library and production code anytime

o no obstacle to library design changes

o large code base to try them out

4 /10

Why do | think | know something about think-cell™=

ranges?

m think-cell has a range library
o evolved from Boost.Range

m T million lines of production code use it

m [jbrary and production code evolve together
o ready to change library and production code anytime

o no obstacle to library design changes

o large code base to try them out

std: :sort(vec);
vec.erase(std: :unique(vec),vec.end());

5/M10

think-cel|*

Why do | think | know something about

ranges?

m think-cell has a range library
o evolved from Boost.Range

m T million lines of production code use it

m [jbrary and production code evolve together
o ready to change library and production code anytime

o no obstacle to library design changes

o large code base to try them out

std: :sort(vec);
vec.erase(std: :unique(vec),vec.end());

m Better:

tc::sort_unique_inplace(vec);

6 /10

Why do | think | know something about think-cell™=

ranges?

m think-cell has a range library
o evolved from Boost.Range

m T million lines of production code use it

m [jbrary and production code evolve together
o ready to change library and production code anytime

o no obstacle to library design changes

o large code base to try them out

std: :sort(vec);
vec.erase(std: :unique(vec),vec.end());

m Better:

tc::sort_unique_inplace(vec);

tc::sort_unique_inplace(vec, less);

7 /110

What are Ranges? think-cell

m Containers

vector
string

list

o own elements

o deep copying
o copying copies elements in O(N)

o deep constness
o const objects implies const elements

8 /10

What are Ranges? think-cell

m Containers

vector
string
list

o own elements

o deep copying
o copying copies elements in O(N)

o deep constness
o const objects implies const elements

m \iews

Range
/\
/\
/ \

Container View

9/10

Views think-cel| "

template<typename It>
struct subrange {
It m_itBegin;
It m_itEnd;
It begin() const {
return m_itBegin;

}
It end() const {

return m_itEnd;

}
};

m reference elements

m shallow copying
o copying copies reference in O(1)

m shallow constness
o view object const independent of element const

10 /110

More Interesting Views: Range Adaptors think-cel|”=

std: :vector<int> v{1,2,4};
auto it=ranges::find(
v,
4
Y; // first element of value 4.

VS.
struct A {
int id;
double data;
}s

std: :vector<int> v{1,2,4};
auto it=ranges::find if(

v,
[J(A const& a){ return a.id==4; } // first element of value 4 in id

);
m Similar in semantics

m Not at all similar in syntax

1 /10

Transform Adaptor think-cell™

std: :vector<int> v{1,2,4};
auto it=ranges::find(
v,
4
Y; // first element of value 4.

VS.
struct A {
int id;
double data;
}s

std: :vector<int> v{1,2,4};

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

Y; // first element of value 4 in id

12 / 110

Transform Adaptor (2) think-cell™

struct A {
int id;
double data;

¥

std: :vector<int> v{1,2,4};

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

Y; // first element of value 4 in id

What is it pointing to?

13 /110

Transform Adaptor (2) think-cell™

struct A {
int id;
double data;

¥

std: :vector<int> v{1,2,4};

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

Y; // first element of value 4 in id

What is it pointing to?

m int!

14 /110

Transform Adaptor (2) think-cell™

struct A {
int id;
double data;

¥

std: :vector<int> v{1,2,4};

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

Y; // first element of value 4 in id

What is it pointing to?
m int!

What if | want it to point to A?

15 /10

Transform Adaptor (2) think-cell™

struct A {
int id;
double data;

¥

std: :vector<int> v{1,2,4};

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

Y; // first element of value 4 in id

What is it pointing to?
m int!
What if | want it to point to A?
auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),

4
) .base();

16 /110

Transform Adaptor Implementation think-cell*

template<typename Base, typename Func>
struct transform_view {
struct iterator {
private:
Func m_func; // in every iterator, hmmm...
decltype(ranges::begin(std::declval<Base&>())) m_it;
public:
decltype(auto) operator*() const {
return m_func(*m_it);
}

decltype(auto) base() const {
return (m_it);

}

i
i

17 / 110

Filter Adaptor think-cel| "

Range of all a with a.id==47
auto rng = v | views::filter([](A const& a){ return 4==a.id; });

m [azy! Filter executed while iterating

18 / 110

Filter Adaptor Implementation think-cell*

template<typename Base, typename Func>
struct filter_view {
struct iterator {
private:
Func m_func; // functor and TWO iterators!
decltype(ranges::begin(std::declval<Base&>())) m_it;
decltype(ranges::begin(std::declval<Base&>())) m _itEnd;

public:
iterator& operator++() {
++m_it;
while(m_it!=m_itEnd
&& !static_cast<bool>(m_func(*m_it))) ++m_it;
// why static cast<bool> ?
return *this;
}
}s5

i

19 /110

How would iterator look like of think-cel| "

views::filter(m func3)(views::filter(m _func2)(views::filter(m funcl, ...)))?

20 /M0

m_func3
m it3
m_func2
m it2
m_funcl
m_itl;
m_itEnd1l;
m_itEnd2
m_funcl
m_itEnd1l;
m_itEnd1l;
m_itEnd3
m_func2
m it2
m_funcl
m_itEnd1l;
m_itEnd1l;
m_itEnd2
m_funcl
m_itEnd1l;
m_itEnd1l;

Boost.Range did this! ARGH!

21/ 10

More Efficient Range Adaptors think-cell*

Must keep iterators small

|dea: adaptor object carries everything that is common for all iterators

m_func
m_itEnd

Iterators carry reference to adaptor object (for common stuff) and base iterator

*m_rng
m it

22 /10

More Efficient Range Adaptors think-cell*

Must keep iterators small

|dea: adaptor object carries everything that is common for all iterators

m_func
m_itEnd

Iterators carry reference to adaptor object (for common stuff) and base iterator

*m_rng
m it

m C++20 State of the Art

m C++20 iterators cannot outlive their range
o unlessitis astd::ranges: :borrowed_range

23 /10

More Efficient Range Adaptors: Iterator think-cell*

SEIEINY

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

).base(); // DOES NOT COMPILE

24 [10

More Efficient Range Adaptors: Iterator think-cell*

SEIEINY

auto it=ranges::find(
v | views::transform(std::mem fn(&A::id)),
4

).base(); // DOES NOT COMPILE

m |[terator from rvalue

m Danger of dangling reference!

25/10

More Efficient Range Adaptors: Iterator think-cell*

SEIEINY

auto it=ranges::find(
tc::as_lvalue(v | views::transform(std::mem fn(&A::id))),
4

) .base(); // COMPILES

m No actual dangling reference because of .base()

m Silence error

26 /110

Again: How does iterator look like of think-cell™=

views::filter(m func3)(views::filter(m _func2)(views::filter(m funcl, ...)))?

m_rng3
m it3
m _rng2
m it2
m_rngl
m itl

m Still not insanely great...

27 /110

Beyond C++20 Ranges: think-cell”

Index Concept

Index

m Like iterator

m But all operations require its range object

template<typename Base, typename Func>
struct index_range {

using Index=...;

Index begin_index() const;

Index end_index() const;

void increment_index(Index& idx) const;

void decrement_index(Index& idx) const;
reference dereference(Index const& idx) const;

i

28 /110

Index-Iterator Compatibility think-cell™

m Index from lterator
o using Index = Iterator

o [ndex operations = Iterator operations

m |terator from Index

template<typename IndexRng>
struct iterator_for_index {
IndexRng* m_rng

typename IndexRng::Index m_idx;

iterator& operator++() {

m_rng.increment_index(m_idx);
return *this;

}s

29 /10

Super-Efficient Range Adaptors With Indices Bl @[

Index-based filter_view

template<typename Base, typename Func>
struct filter view {

Func m_func;

Base& m_base;

using Index=typename Base::Index;
void increment_index(Index& idx) const {

do {
m_base.increment_index(idx);

} while(idx!=m_base.end_index()
&& !static_cast<bool>(m func(m base.dereference_index(idx)))

)
};

30/10

Super-Efficient Range Adaptors With Indices Bl @[

Index-based filter_view

template<typename Base, typename Func>
struct filter view {

Func m_func;

Base& m_base;

using Index=typename Base::Index;

template<typename IndexRng>

struct iterator_for _index {
IndexRng* m_rng
typename IndexRng::Index m_idx;

m All iterators are two pointers
o irrespective of stacking depth

31/ 10

C++20 Ranges and rvalue containers think-cell™

If adaptor input is lvalue container
m views::filter creates view

m view is reference, O(1) copy, shallow constness etc.

auto v = create vector();
auto rng = v | views::filter(predl);

32 /M0

C++20 Ranges and rvalue containers think-cell™

If adaptor input is rvalue container
m views::filter cannot create view

m view would hold dangling reference to rvalue

auto rng = create_vector() | views::filter(predl); // DOES NOT COMPILE

33/10

C++20 Ranges and rvalue containers think-cell™

If adaptor input is rvalue container
m views::filter cannot create view

m view would hold dangling reference to rvalue

auto rng = create_vector() | views::filter(predl); // DOES NOT COMPILE

m Return lazily filtered container?

auto foo() {
auto vec=create_vector();
return std::make tuple(vec, views::filter(pred)(vec));

34 /110

C++20 Ranges and rvalue containers think-cell™

If adaptor input is rvalue container

B views::filter cannot create view

m view would hold dangling reference to rvalue
auto rng = create_vector() | views::filter(predl); // DOES NOT COMPILE
m Return lazily filtered container?

auto foo() {
auto vec=create_vector();
return std::make tuple(vec, views::filter(pred)(vec)); // DANGLING REFERENCE!

}

ARGH!

35/110

think-cell and rvalue containers think-cel| "

If adaptor input is lvalue container

m tc::filter creates view

m view is reference, O(1) copy, shallow constness etc.

If adaptor input is rvalue container

m tc::filter creates container

m aggregates rvalue container, deep copy, deep constness etc.
Always lazy

® | aziness and container-ness are orthogonal concepts

auto vec=create_vector();
auto rng=tc::filter(vec,predl);

auto foo() {

return tc::filter(creates_vector(),predl);

}

36 /110

Beyond C++20 Ranges: think-cel|*=

More Flexible Algorithm Returns

template< typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
auto const itEnd=ranges::end(rng);
for(auto it=ranges::begin(rng); it!=itEnd; ++it)
if(*it==what)
return it;
return itEnd;

37 /10

More Flexible Algorithm Returns (2) think-cell*

template< typename Pack, typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
auto const itEnd=ranges::end(rng);
for(auto it=ranges::begin(rng); it!=itEnd; ++it)
if(*it==what)
return Pack::pack(it,rng);
return Pack::pack_singleton(rng);

}

struct return_element or_end {
static auto pack(auto it, auto&& rng) {
return it;
}
static auto pack_singleton(auto&& rng) {
return ranges::end(rng);

}
}

auto it=find<return_element_or_end>(...)

38 /110

More Flexible Algorithm Returns (3) think-cell*

template< typename Pack, typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
auto const itEnd=ranges::end(rng);
for(auto it=ranges::begin(rng); it!=itEnd; ++it)
if(*it==what)
return Pack::pack(it,rng);
return Pack::pack_singleton(rng);

}

struct return_element {
static auto pack(auto it, auto&& rng) {
return it;

}

static auto pack _singleton(auto && rng) {
std: :assert(false);
return ranges::end(rng);

}

auto it=find<return_element>(...)

39/110

More Flexible Algorithm Returns (3) think-cell*

template< typename Pack, typename Rng, typename What >
decltype(auto) find(Rng && rng, What const& what) {
auto const itEnd=ranges::end(rng);
for(auto it=ranges::begin(rng); it!=itEnd; ++it)
if(*it==what)
return Pack::pack(it,rng);
return Pack::pack_singleton(rng);

}

struct return_element or_null {
static auto pack(auto it, auto&& rng) {
return tc::element_t<decltype(it)>(it);
}
static auto pack_singleton(auto&& rng) {
return tc::element_t<decltype(ranges::end(rng))>();

}
}

if(auto it=find<return_element or null>(...)) { ... }

40 /110

Generator Ranges think-cell

template<typename Sink>
void traverse_widgets(Sink sink) {
if(windowl) {
windowl->traverse_widgets(std::ref(sink));

}
sink(buttonl);

sink(listbox1);
if(window2) {
window2->traverse_widgets(std::ref(sink));

}
}

m |ike range of widgets

m pbut no iterators

41/ 10

Generator Ranges think-cell

template<typename Sink>
void traverse_widgets(Sink sink) {
if(windowl) {
windowl->traverse_widgets(std::ref(sink));

}
sink(buttonl);

sink(listbox1);
if(window2) {
window2->traverse_widgets(std::ref(sink));
}
}

mouse_hit any widget=tc::any_of(
[](auto sink){ traverse widgets(sink); },
[](auto const& widget) {
return widget.mouse hit();

}
)5

42 /110

External Iteration think-cel| "

m Consumer calls producer to get new element

m example: C++ iterators

N

| Stack Producer Producer

| / \ / \

Consumer Consumer Consumer

m Consumer is at bottom of stack

m Producer is at top of stack

43 /110

External iteration (2) think-cel| "

Consumer is at bottom of stack

m contiguous code path for whole range
m easier to write

m better performance
o state encoded in instruction pointer

o no limit for stack memory
Producer is at top of stack
m contiguous code path for each item
m harder to write

m worse performance
o single entry point, must restore state

o fixed amount of memory or go to heap

44 /110

Internal Iteration think-cel| "

m Producer calls consumer to offer new element

m example: for_each_xxx, "visitor"

N

| Stack Consumer Consumer

| / \ / \

Producer Producer Producer

Producer is at bottom of stack
m . all the advantages of being bottom of stack ...
Consumer is at top of stack

m . all the disadvantages of being top of stack ...

45 /110

Coroutines think-cel| "

Can both consumer and producer be bottom-of-stack?

m Yes, with coroutines

// does not compile, conceptual
generator<widget&> traverse_widgets() {
if(windowl) {
windowl->traverse widgets();
}
co_yield buttonl;
co_yield listbox1;
if(window2) {
window2->traverse widgets();

}

46 /110

Coroutines (2) think-cell”=

m Stackful
o use two stacks and switch between them

o very expensive
o implemented as OS fibers

o 1 MB of virtual memory per coroutine

m Stackless (C++20)
o whole callstack must be coroutine-d

// does not compile, conceptual
generator<widget&> traverse widgets() {
if(windowl) {
co_yield windowl->traverse widgets();

}
co_yield buttonil;

co_yield listbox1;
if(window2) {
co_yield window2->traverse widgets();

}

47 | 110

Coroutines (2) think-cell”=

m Stackful
o use two stacks and switch between them

o very expensive
o implemented as OS fibers

o 1 MB of virtual memory per coroutine

m Stackless (C++20)
o whole callstack must be coroutine-d

// does not compile, conceptual
generator<widget&> traverse widgets() {
ranges: :for_each(windowsl, [](auto const& windowl) {
co_yield windowl->traverse widgets(); // DOES NOT COMPILE
1)
co_yield buttonil;
co_yield listbox1;
ranges: :for_each(windows2, [](auto const& window2) {
co_yield window2->traverse widgets(); // DOES NOT COMPILE

1)

48 /110

Coroutines (2) think-cell”=

m Stackful
o use two stacks and switch between them

o very expensive
o implemented as OS fibers

o 1 MB of virtual memory per coroutine

m Stackless (C++20)
o can only yield in top-most function

o still a bit expensive
o dynamic jump to resume point

o save/restore some registers

o no aggressive inlining

49 /110

Internal Iteration often good enough think-cell

Algorithm Internal Iteration?
find no (single pass iterators)
binary_search no (random access iterators)

50 /110

Internal Iteration often good enough think-cell

Algorithm Internal Iteration?

find no (single pass iterators)
binary_search no (random access iterators)
for_each yes

accumulate yes

all_of yes

any_of yes

none_of yes

51/ 10

Internal Iteration often good enough think-cell

Algorithm Internal Iteration?

find no (single pass iterators)
binary_search no (random access iterators)
for_each yes

accumulate yes

all_of yes

any_of yes

none_of yes

Adaptor Internal Iteration?
tc::filter yes
tc::transform yes

So allow ranges that support only internal iteration!

52 /10

any_of implementation think-cell”

namespace tc {
template< typename Rng >
bool any_of(Rng const& rng) {
bool bResult=false;
tc::for_each(rng, [&](bool context b){
bResult=bResult || b;

})s

return bResult;

}

m tc::for_eachis common interface for iterator, index and generator ranges

m Ok?

53 /10

any_of implementation think-cell”

namespace tc {
template< typename Rng >
bool any_of(Rng const& rng) {
bool bResult=false;
tc::for_each(rng, [&](bool context b){
bResult=bResult || b;

})s

return bResult;

}

m tc::for_eachis common interface for iterator, index and generator ranges
m Ok?

O ranges::any_of stops when true is encountered!

54 /10

Interruptable Generator Ranges think-cell*

First idea: exception!

55 /10

Interruptable Generator Ranges think-cell*

First idea: exception!

® too slow:-(

56 /110

Interruptable Generator Ranges think-cell*

First idea: exception!
m {00 slow:-(

Second idea:

enum break or continue {
break_,
continue

}s

template< typename Rng >
bool any_of(Rng const& rng) {
bool bResult=false;
tc::for_each(rng, [&](bool context b){
bResult=bResult || b;
return bResult ? break_ : continue_;

})s

return bResult;

57 /10

Interruptable Generator Ranges (2) think-cell*

m Generator Range can elide break_ check
o |f functor returns break_or_continue,
o break if break_ is returned.

o |f functor returns anything else,
o nothing to check, always continue

58 /110

hink el

std::list<int> 1st;
std: :vector<int> vec;

tc::for_each(tc::concat(lst,vec), [](int i) {

b

59 /10

concat implementation with indices think-cell*

template<typename Rngl, typename Rng2>

struct concat_range {

private:
using Indexl=typename range_index<Rngl>::type;
using Index2=typename range_index<Rng2>::type;

Rngl& m_rngl;

Rng2& m_rng2;

using index=std::variant<Indexl, Index2>;
public:

60 /110

concat implementation with indices (2) think-cell*

void increment_index(index& idx) {
std::visit(tc::make overload(
[&] (Index1& idx1){
m_rngl.increment_index(idx1);
if (m_rngl.at_end_index(idx1)) {
idx=m_rng2.begin_index();

}

}s
[&] (Index2& idx2){

m_rng2.increment_index(idx2);

}
), idx);

m Branch for each increment!

61/ 110

concat implementation with indices (3) think-cell*

auto dereference_index(index const& idx) const {
std::visit(tc::make overload(
[&] (Index1l const& idx1){
return m_rngl.dereference(idxl);

}s
[&] (Index2 const& idx2){

return m_rng2.dereference(idx2);

}
), idx);

i

m Branch for each dereference!

m How avoid all these branches?

62 /110

concat implementation with indices (3) think-cell*

auto dereference_index(index const& idx) const {
std::visit(tc::make overload(
[&] (Index1l const& idx1){
return m_rngl.dereference(idxl);

}s
[&] (Index2 const& idx2){

return m_rng2.dereference(idx2);

}
), idx);

}s
m Branch for each dereference!

m How avoid all these branches?
o With Generator Ranges!

63 /110

concat implementation as generator range think-cell*

template<typename Rngl, typename Rng2>
struct concat_range {
private:

Rngl m_rngl;

Rng2 m_rng2;

public:

// version for non-breaking func
template<typename Func>
void operator()(Func func) {
tc::for_each(m_rngl, func);
tc::for_each(m_rng2, func);
}
¥

m Even iterator-based ranges sometimes perform better with generator interface!

64 /110

Ranges instead of std::format? think-cell™

m C++20 std: :format formatters write to output iterators
o internal iteration!

65/ 110

Ranges instead of std::format? think-cell™

m C++20 std: :format formatters write to output iterators
o internal iteration!

m Can rewrite formatters as generator ranges:

double f=3.14;
tc::concat("You won ", tc::as _dec(f,2), " dollars.")

m single unifying concept instead of separate std: : format

66 /110

Ranges instead of std::format? think-cell™

m C++20 std: :format formatters write to output iterators
o internal iteration!

m Can rewrite formatters as generator ranges:

double f=3.14;
tc::concat("You won ", tc::as _dec(f,2), " dollars.")

®m single unifying concept instead of separate std: : format

m not like <iostream>: double itself is not a character range:

tc::concat("You won ", f, " dollars."™) // DOES NOT COMPILE

67 /10

Ranges instead of std::format (2) think-cell”

m Extensible by functions returning ranges

auto dollars(double f) {
return tc::concat("$", tc::as_dec(f,2));

}
double f=3.14;
tc::concat("You won ", dollars(f), ".");

68 /110

hink el

tc::concat(
"<body>", html escape(
tc::placeholders("You won {0} dollars.", tc::as_dec(f,2))
), "</body>"

69 /110

Format Strings think-cell

tc::concat(
"<body>", html escape(

tc::placeholders("You won {@} dollars.", tc::as _dec(f,2))
), "</body>"

)
m support for names

tc::concat(
"<body>", html escape(

tc::placeholders("You won {amount} dollars on {date}."
, tc::named _arg("amount", tc::as _dec(f,2))
, tc::named _arg("date", tc::as_IS08601(

std: :chrono::system_clock: :now()

))

)

), "</body>"
)

m Formatting parameters (#decimal digits etc.) not part of format string
o |nternationalization: translator can rearrange placeholders, but not change parameters

70 /110

Formatting Into Containers (1) think-cell*

std::string gives us

m Empty Construction
std::string s; // compiles
m Construction from literal, another string

std::string s1("Hello"); // compiles
std::string s2(sl); // compiles

71/ 10

Formatting Into Containers (1) think-cell*

std::string gives us

m Empty Construction
std::string s; // compiles
m Construction from literal, another string

std::string s1("Hello"); // compiles
std::string s2(sl); // compiles

m Add construction from 1 Range

std::string s3(tc::as_dec(3.14,2)); // suggested
std::string s4(tc::concat("You won ", tc::as_dec(3.14,2), " dollars.")); // suggested

72 /10

Formatting Into Containers (1) think-cell*

std::string gives us

m Empty Construction
std::string s; // compiles
m Construction from literal, another string

std::string s1("Hello"); // compiles
std::string s2(sl); // compiles

m Add construction from 1 Range

std::string s3(tc::as_dec(3.14,2)); // suggested
std::string s4(tc::concat("You won ", tc::as_dec(3.14,2), " dollars.")); // suggested

m Add construction from N Ranges

std: :string s5("Hello", " World"); // suggested
std::string s6("You won ", tc::as_dec(3.14,2), " dollars."); // suggested

73 /10

Formatting Into Containers (2) think-cell*

= \What about existing constructors?

std::string s1("A", 3);
std::string s2('A', 3);
std::string s3(3 , 'A');

74 [110

Formatting Into Containers (2) think-cell*

= \What about existing constructors?

std: :string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3);
std::string s3(3 , 'A');

75 /110

Formatting Into Containers (2) think-cell*

= \What about existing constructors?

std: :string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3); // Adds 65x Ctrl-C
std::string s3(3 , 'A');

76 / 110

Formatting Into Containers (2) think-cell*

= \What about existing constructors?

std: :string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3); // Adds 65x Ctrl-C
std::string s3(3 , 'A'); // Adds 3x "A’

77 [110

Formatting Into Containers (2) think-cell*

= \What about existing constructors?

std: :string s1("A", 3); // UB, buffer "A" overrun
std::string s2('A', 3); // Adds 65x Ctrl-C
std::string s3(3 , 'A'); // Adds 3x "A’

m Deprecate them!

std: :string s(tc::repeat_n('A', 3)); // suggested, repeat n as in Range-v3

78 [110

Formatting Into Containers (3) think-cell*

m think-cell library uses tc::explicit_cast to simulate adding/removing explicit constructors:

auto sd4=tc::explicit cast<std::string>("Hello", " World");
auto s5=tc::explicit cast<std::string>("You won ", tc::as dec(f,2), " dollars.");

79 /10

Formatting Into Containers (3)

think-cel|*

m think-cell library uses tc::explicit_cast to simulate adding/removing explicit constructors:
auto sd4=tc::explicit cast<std::string>("Hello", " World");

auto s5=tc::explicit cast<std::string>("You won ", tc::as dec(f,2), " dollars.");

m tc::cont_emplace back wraps .emplace back/.push_back, uses tc::explicit cast as needed:

std: :vector<std: :string> vec;
tc::cont_emplace back(vec, tc::as_dec(3.14,2));

80 /110

Formatting Into Containers (3)

think-cel|*

m think-cell library uses tc::explicit_cast to simulate adding/removing explicit constructors:
auto sd4=tc::explicit cast<std::string>("Hello", " World");

auto s5=tc::explicit cast<std::string>("You won ", tc::as dec(f,2), " dollars.");

m tc::cont_emplace back wraps .emplace back/.push_back, uses tc::explicit cast as needed:

std: :vector<std: :string> vec;
tc::cont_emplace back(vec, tc::as_dec(3.14,2));

m Can tc::append:
std::string s;

tc::append(s, tc::concat("You won ", tc::as_dec(f,2), " dollars."));
tc::append(s, "You won ", tc::as dec(f,2), " dollars.");

81/ 10

Fast Formatting Into Containers think-cell”

m determine string length
m allocate memory for whole string at once

m fill in characters

82 /10

Fast Formatting Into Containers think-cell”

m determine string length

m allocate memory for whole string at once

m fill in characters

template<typename Cont, typename Rng>
auto explicit cast(Rng const& rng) {

return Cont(ranges::begin(rng),ranges::end(rng));
}

// note: there are more explicit cast implementations for types other than containers

83 /110

Fast Formatting Into Containers think-cell”

m determine string length

m allocate memory for whole string at once

m fill in characters

template<typename Cont, typename Rng>
auto explicit cast(Rng const& rng) {

return Cont(ranges::begin(rng),ranges::end(rng));
}
// note: there are more explicit cast implementations for types other than containers

m for non-random-access ranges, string ctor runs twice over rng :-(
o first determine size

o then copy characters

84 /110

Fast Formatting Into Containers think-cell”

m avoid traversing rng twice
o rngimplements size() member

o explicit loop to take advantage of std: :size

template<typename Cont, typename Rng, std::enable if<

Rng has size and is not random-access
> >

auto explicit_cast(Rng const& rng) {
Cont cont;

cont.reserve(std::size(rng));

for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace back(cont, *it);
}

return cont;

85/ 110

Fast Formatting Into Containers think-cell”

m also have tc::append

template<typename Cont, typename Rng, std::enable if<

Rng has size and is not random-access
> >

void append(Cont& cont, Rng const& rng) {
cont.reserve(cont.size() + std::size(rng));

for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace back(cont, *it);
}

86 /110

Fast Formatting Into Containers think-cell”

m also have tc::append

template<typename Cont, typename Rng, std::enable if<

Rng has size and is not random-access
> >

void append(Cont& cont, Rng const& rng) {
cont.reserve(cont.size() + std::size(rng));

for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace back(cont, *it);
}

}

m all good?

87 /10

Fast Formatting Into Containers think-cell”

m also have tc::append

template<typename Cont, typename Rng, std::enable if<

Rng has size and is not random-access
> >

void append(Cont& cont, Rng const& rng) {
cont.reserve(cont.size() + std::size(rng));

for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace back(cont, *it);
}

}

B .reserve s evillll

88 /110

Better reserve think-cel| "

m when adding N elements, guarantee 0(N) moves and 0(log(N)) memory allocations!

template< typename Cont >

void cont_reserve(Cont& cont, typename Cont::size type n) {
if(cont.capacity()<n) {

cont.reserve(max(n,cont.capacity()*8/5));
}

}

template<typename Cont, typename Rng, enable if<

Rng has size and is not random-access
> >

void append(Cont& cont, Rng const& rng) {
tc::cont_reserve(cont.size() + std::size(rng));
for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace_back(cont, *it);
}

89 /110

Fast Formatting Into Containers think-cell”

template<typename Cont, typename Rng, enable if<
Rng has size and is not random-access
> >

void append(Cont& cont, Rng const& rng) {
tc::cont_reserve(cont.size() + std::size(rng));
for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace_back(cont, *it);
}

90 /110

Fast Formatting Into Containers think-cell”

template<typename Cont, typename Rng, enable if<
Rng has size and is not random-access
> >
void append(Cont& cont, Rng const& rng) {
tc::cont_reserve(cont.size() + std::size(rng));
for(auto it=ranges::begin(rng); it!=ranges::end(rng); ++it) {
tc::cont_emplace_back(cont, *it);
}
}

m \What about generator ranges?

91/ 10

Appender Customization Point

think-cel|*

m introduce appender sink for explicit cast and append to use

template<typename Cont, typename Rng>
void append(Cont& cont, Rng&& rng) {

tc::for_each(std: :forward<Rng>(rng), tc::appender(cont));
}

92 /10

Appender Customization Point think-cell”

m introduce appender sink for explicit cast and append to use

template<typename Cont, typename Rng>
void append(Cont& cont, Rng&& rng) {

tc::for_each(std: :forward<Rng>(rng), tc::appender(cont));
}

®m appender customization point
o returned by container: :appender() member function

o default for std:: containers
template<typename Cont>

struct appender {
Cont& m_cont;

template<typename T> void operator()(T&& t) {
tc::cont_emplace back(m _cont, std::forward<T>(t));
}

}s

93 /110

Appender Customization Point think-cell”

m introduce appender sink for explicit cast and append to use

template<typename Cont, typename Rng>
void append(Cont& cont, Rng&& rng) {

tc::for_each(std: :forward<Rng>(rng), tc::appender(cont));
}

®m appender customization point
o returned by container: :appender() member function

o default for std:: containers

template<typename Cont>
struct appender {
Cont& m_cont;

template<typename T> void operator()(T&& t) {
tc::cont_emplace back(m _cont, std::forward<T>(t));
}

}s

® [sn'tthis just std::back_inserter?

94 /110

Chunk Customization Point think-cel| "

m \What about reserve?
o Sink needs whole range to call std: :size before iteration

95/110

Chunk Customization Point think-cel| "

m \What about reserve?
o Sink needs whole range to call std: :size before iteration
m new Sink customization point chunk

o if available, tc: :for_each calls it with whole range

template<typename Cont, enable_if<Cont has reserve()> >
struct reserving appender : appender<Cont> {

template<typename Rng, enable_if<Rng has size()> >
void chunk(Rng&& rng) const {

tc::cont_reserve(m_cont, m_cont.size()+std::size(rng));
tc::for_each(std::forward<Rng>(rng),

static_cast<appender<Cont> const&>(*this)
)

i

96 /110

Chunk Customization Point: other uses think-cel| "

m file sink advertises interest in contiguous memory chunks

struct file appender {
void chunk(std: :span<unsigned char const> rng) const {
std: :fwrite(rng.begin(),1,rng.size(),m _file);
}
void operator()(unsigned char ch) const {
chunk(tc::single(ch));
}
¥

97 /110

Performance: Appender vs Hand-Written think-cell*

m How much loss compared to hand-written code?
o trivial formatting task 10x 'A" + 10x 'B' + 10x 'C' best to expose overhead

struct Buffer {

char achBuffer[1024];

char* pchEnd=&achBuffer[0];
} buffer;

void repeat_handwritten(char chA, int cchA,
char chB, int cchB,
char chC, int cchC
) {
for (auto i = cchA; 90 < i; --i) {
*buffer.pchEnd=chA;
++buffer.pchEnd;

. cchB ... chB ...
. cchC ... chC ...

98 /110

Performance: Appender vs Hand-Written think-cell*

struct Buffer {

auto appender() & {
struct appender_t {
Buffer* m_buffer;
void operator()(char ch) noexcept {
*m_buffer->pchEnd=ch;
++m_buffer->pchEnd;

}
}s
return appender_t{this};
}
} buffer;

void repeat_with_ranges(char chA, int cchA,
char chB, int cchB,
char chC, int cchC) {
tc::append(buffer, tc::repeat_n(chA,cchA), tc::repeat_n(chB,cchB),
tc::repeat_n(chC,cchC));

99 /110

Performance: Appender vs Hand-Written think-cell*

m repeat n iterator-based
o ~50% more time than hand-written (Visual C++ 15.8)

®m repeat_n supports internal iteration
o ~15% more time than hand-written (Visual C++ 15.8)

m Testis worst case: actual work is trivial
o smaller difference for, e.g., converting numbers to strings

100 / 110

Performance: Custom vs Standard Appender BUlllEGIE

m toy basic_string implementation

o only heap: pointers begin, end, end_of_memory

m Again trivial formatting task: 10x ‘A" + 10x 'B"' + 10x 'C'

void repeat_with_ranges(
char chA, int cchA,
char chB, int cchB,
char chC, int cchC
) {
tc::append(mystring,
tc::repeat_n(chA,cchA), tc::repeat_n(chB,cchB),
tc::repeat_n(chC,cchC));

101/ 110

Performance: Custom vs Standard Appender BUlllEGIE

m Standard Appender

template<typename Cont>
struct appender {
Cont& m_cont;
template<typename T>
void operator()(T&& t) {
m_cont.emplace back(std::forward<T>(t));
}

¥
template<typename Cont, enable_if<Cont has reserve()> >
struct reserving appender : appender<Cont> {
template<typename Rng, enable if<Rng has size()> >
void chunk(Rng&& rng) const {
tc::cont_reserve(m_cont, m_cont.size()+std::size(rng));
tc::for_each(std::forward<Rng>(rng),
static_cast<appender<Cont> const&>(*this)
)

}s

102 / 110

Performance: Custom vs Standard Appender BUlllEGIE

m Custom Appender

template<typename Cont>
struct mystring appender : appender<Cont> {
Cont& m_cont;
template<typename T>
void operator()(T&& t) {
m_cont.emplace back(std::forward<T>(t));
}
template<typename Rng, enable if<Rng has size()> >
void chunk(Rng&& rng) const {
tc::cont_reserve(m_cont, m_cont.size()+std::size(rng));
tc::for_each(std::forward<Rng>(rng),
[&] (auto&& t) {
*m_cont.m_ptEnd=std: :forward<decltype(t)>(t);
++m_cont.m _ptEnd;

s
};

103 /110

Performance: Custom vs. Standard Appender BUlllEGIE

m String was only 30 characters

m Heap allocation
m Custom Appender ~20% less time (Visual C++ 15.8)

B Requires own basic_string implementation
o uninitialized buffer not exposed by std: :basic_string/std: :vector

104 / 10

Performance: Future Work think-cel| "

m f not all snippets implement size(): new customization point min_size()?
o concat::min_size() is sum of min_size() of components

o0 min_size() never wrong to return @

m custom file appender that fills fixed 1/O buffer
o replace std: :FILE buffer with own buffer

o offer unchecked write as long as snippet size() still fits

o new customization point max_size?

105 /110

hink el

m Ranges are very useful
m |ndex-based ranges and generators improve performance over C++20 iterator-based ranges

m Unify ranges with text formatting

106 / 110

Now that we have all this range stuff 'I'h I n k_ CeH B

m URL of our range library: https://github.com/think-cell/think-cell-library

107 / 110

https://github.com/think-cell/think-cell-library

Now that we have all this range stuff ‘I'h I n k_ CeH Q

m URL of our range library: https://github.com/think-cell/think-cell-library

| hate the range-based for loop!

108 / 110

https://github.com/think-cell/think-cell-library

Now that we have all this range stuff ‘I'h I n k_ CeH Q

m URL of our range library: https://github.com/think-cell/think-cell-library

| hate the range-based for loop!

because it encourages people to write this

bool b=false;
for(int n : rng) {
if(is_prime(n)) {
b=true;
break;

109 / 110

https://github.com/think-cell/think-cell-library

Now that we have all this range stuff ‘I'h I n k_ CeH Q

m URL of our range library: https://github.com/think-cell/think-cell-library

| hate the range-based for loop!

because it encourages people to write this

bool b=false;
for(int n : rng) {
if(is_prime(n)) {
b=true;
break;

}

instead of this
bool b=ranges::any of(rng, is prime);

THANK YOU!

10 /110

https://github.com/think-cell/think-cell-library

